Authors

1 Materials and Energy Research Center, Department of Semiconductors, Karaj, Iran.

2 Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran.

Abstract

In this research, We reported a novel and facile approach to fabricate rGO nanosheet arrays on 3D porous nickel foam. A graphene layer with the sharp edges and wrinkles was obtained on nickel foam by an electrophoretic deposition (EPD).The fabricated electrodes were characterized using scanning electron microscope(FE-SEM).The GO sheets on the nickel foam was annealed at 300 ̊C, 600 ̊C and 900 ̊C for 4 h under flow of Ar. The electrochemical activities of supercapacitors were assessed using cyclic voltammetry (CV) and charge-discharge measurements. A maximum specific capacitance of the Go annealed at 900 ̊C can reach up to 148Fg-1 at a scan rate of 5mVs-1, which is higher than Go annealed at 600 ̊C (115Fg-1), Go annealed at 300 ̊C (72Fg-1) and Go (52Fg-1). The supercapacitor based on a GO with 900 ͦC of annealing temperature showed long cycling stability with 96.1% of capacitance retention after 200 cycles.

Keywords

  1. Linden, D. , Reddy, T.B., Handbook of batteries, New York, (2002).
  2. Winter, M., Brodd, R.J. , What Are Batteries, Fuel Cells, and Supercapacitors?, Chem. Rev., 104 (2004) 4245-4270.
  3. Kötz, R., Carlen, M., Principles and applications of electrochemical capacitors, Electrochim. Acta, 45 (2000) 2483-2498.
  4. Nuintek, Comparison of capacitor, supercapacitorand battery (2004), http://www.nuin.co.kr.
  5. Pell, W.G., Conway, B.E., Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes, J. Power Sources, 136 (2004) 334-345.
  6. Xu Hui a, Luming Qian a, Gary Harris b, Tongxin Wang b,c, Jianfei Che a,b, Fast fabrication of NiO@graphene composites for supercapacitor,electrodes: Combination of reduction and deposition, J. Materials and Design.
  7. Makino, S., Yamauchi, Y., Sugimoto, W., Synthesis of electro-deposited ordered mesoporous RuOx using lyotropic liquid crystal and application toward micro-supercapacitors, J. Power Sources, 227 (2013) 153-160.
  8. CHu, C.C., Chang, K.H., Lin, M.C., Wu, Y.T. , Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett., 6 (2006) 2690-2695.
  9. Lee, J.W., Hall, A.S. , Kim, J.-D. , Mallouk, T.E. , A Facile and Template-Free Hydrothermal Synthesis of Mn3O4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability, Chem. Mater., 24 (2012) 1158-1164.
  10. Kim, Y.-H. , Park, S.-J. , Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes, Curr. Appl. Phys., 11 (2011) 462-466.
  11. Pan, X. , Zhao, Y. , Ren, G. , Fan, Z., Highly conductive VO2 treated with hydrogen for supercapacitors, Chem. Commun., 49 (2013) 3943-3945.
  12. Lu, Q., Lattanzi, M.W. , Chen, Y. , Kou, X., Li, W., Fan, X., Unruh, K.M. , Chen, J.G. , Xiao, J.Q. , Supercapacitor Electrodes with High-Energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites, Angew. Chem. Int. Ed., 50 (2011) 6847-6850.
  13. Kang, J. , Hirata, A., Kang, L., Zhang, X., Hou, Y., Chen, L., Li, C., Fujita, T., Akagi, K., Chen, M., Enhanced Supercapacitor Performance of MnO2 by Atomic Doping, Angew. Chem. Int. Ed., 52 (2013) 1664-1667.
  14. Zhuo, L., Wu, Y., Ming, J., Wang, L., Yu, Y., Zhang, X., Zhao, F., Facile synthesis of a Co3O4-carbon nanotube composite and its superior performance as an anode material for Li-ion batteries, J. Mater. Chem. A, 1 (2013) 1141-1147.
  15. Dong, X.-C. , Xu, H., Wang, X.-W. , Huang, Y.-X. , Chan-Park, M.B. , Zhang, H., Wang, L.-H. , Huang, W., Chen, P., 3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection, ACS Nano, 6 (2012) 3206-3213.
  16. Zhang, X., Shi, W., Zhu, J., Kharistal, D.J. , Zhao, W., Lalia, B.S. , Hng, H.H. , Yan, Q., High-Power and High-Energy-Density Flexible Pseudocapacitor Electrodes Made from Porous CuO Nanobelts and Single-Walled Carbon Nanotubes, ACS Nano, 5 (2011) 2013-2019.
  17. Huang, H., Liu, Y., Wang, J., Gao, M., Peng, X., Ye, Z., Self-assembly of mesoporous CuO nanosheets-CNT 3D-network composites for lithium-ion batteries, Nanoscale, 5 (2013) 1785-1788.
  18. Xiang, J.Y. , Tu, J.P. , Zhang, L., Zhou, Y., Wang, X.L. , Shi, S.J. , Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries, J. Power Sources, 195 (2010) 313-319.
  19. Wang, B., Wu, X.-L. , Shu, C.-Y. , Guo, Y.-G. , Wang, C.-R. , Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries, J. Mater. Chem., 20 (2010) 10661-10664.
  20. Zhou, J. , Ma, L. , Song, H. , Wu, B. , Chen, X. , Durable high-rate performance of CuO hollow nanoparticles/graphene-nanosheet composite anode material for lithium-ion batteries, Electrochem. Commun., 13 (2011) 1357-1360.
  21. Dubal, D.P. , Gund, G.S. , Lokhande, C.D. , Holze, R. , CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition, Mater. Res. Bull., 48 (2013) 923–928.
  22. Stoller, M.D. , Park, S. , Zhu, Y. , An, J. , Ruoff, R.S. , Graphene-Based Ultracapacitors, Nano Lett., 8 (2008) 3498-3502.
  23. Hummers Jr, W.S. , Offeman, R.E. , Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339.
  24. Fakhri, A., Adsorption characteristics of graphene oxide as a solid adsorbent for aniline removal from aqueous solutions: Kinetics, thermodynamics and mechanism studies. Journal of Saudi Chemical Society, 2013.
  25. Pendashteh, Afshin , Moosavifard, Seyyed Ebrahim , Rahmanifar, Mohammad S. , Highly Ordered Mesoporous CuCo2O4 Nanowires, a Promising Solution for High-Performance Supercapacitors, Chemistry of Materials. 
  26. Lee, J.W. , Hall, A.S. , Kim, J.-D. , Mallouk, T.E. , A Facile and Template-Free Hydrothermal Synthesis of Mn3O4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability, Chem. Mater., 24 (2012) 1158-1164. 
  27. Mai, Y.J. , Wang, X.L. , Xiang, J.Y. , Qiao, Y.Q. , Zhang, D. , Gu, C.D. , Tu, J.P. , CuO/graphene composite as anode materials for lithium-ion batteries, Electrochim. Acta, 56 (2011) 2306-2311. 
  28. Hu, C. C. , Tsou, T. W. , Commun. 2002, 4, 105.