Authors

1 Institute for Color Science and Technology, Department of Organic Colorants, Tehran, Iran.

2 Institute for Color Science and Technology, Center of Excellence of Color Science and Technology, Tehran, Iran.

Abstract

Two organic dyes based on indoline were prepared as photosensitizer contain phenothiazine as the electron donor group and acrylic acid (Dye 1) and cyanoacrylic acid (Dye 2) as the electron acceptor anchoring. Spectrophotometric measurements of the synthesized dyes in solution and on a ZnO substrate were carried out in order to assess changes in the status of the dyes. The wavelength of maximum absorption of dye 1 and dye 2 in solution are 412 nm and 424 nm and on ZnO films are 429 nm and 438 nm, respectively. Maximum dye adsorption time around 10h could be utilized with minimum aggregation or precipitation of the dye on photoelectrode substrate. The effect of Li ions and composition of the iodide/triiodide based electrolyte on the performance of DSSCs were investigated. A high concentration of Li ions in electrolyte was found to be shift the ZnO conduction band edge to more negative potentials that have a direct effect on recombination phenomena. The Maximum conversion efficiency was achieved for dye 2 in the presence of 1mM Li ions around 5.17%.

Keywords

1. Xu, H., Tao, X., Wang, D., Zheng, Y., Chen, J., Enhanced efficiency in dye-sensitized solar cells based on TiO2 nanocrystal/nanotube double-layered films, Electrochimica Acta, 2010, 55, 2280–2285.  
2. O'Regan, B., Grätzel, M., A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737-740.
3. Hosseinnezhad, M., Moradian, S., Gharanjig, K., Synthesis and characterization of two new organic dyes for dye-sensitized solar cells, Synthetic Commun, 2014, 44, 779-787.
4. Hosseinnezhad, M., Moradian, S., Gharanjig, K., Synthesis and application of two organic dyes for dye-sensitized solar cells, Progress in Color, Colorants and Coatings Journal, 2013, 6, 107-109.
5. Groningen, R., Fullerene based Organic Solar Cells, Timisoara, Romaine, 1978, 154-157.
6. Park, S.S., Won, Y.S., Choi, Y.C., Kim, J.H., Molecular Design of Organic Dyes with Double Electron Acceptor for Dye-Sensitized Solar Cell, Energy Fuel, 2009, 23, 3732-3736.
7. Chen, Y., Wu, T.Y., Synthesis, optical and electrochemical properties of luminescent copolymer containing N-hexyl-3,8-iminodibenzyl chromophores, Polymer, 2001, 42, 9895-9901.
8. Mishra, A., Fischer, M.K., Bauerle, P., Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules, Angewandte Chemie International Edition, 2009, 48, 2474-2499.
9. Wang, Z.S., Koumura, N., Cui, Y., Takahashi, H., Sekiguchi, A., Mori, T., Kubo, A., Furube, M., Hara, K., Hexylthiophene Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics: Tuning of Solar-Cell Performance by Structural Modification, Chemistry of Materials, 2008, 20, 3993-4003.
10. Wu, T., Tsao, M., Chen, F., Su, S., Chang, C., Wang, H., Lin, Y., Yang, W., Sun, I., Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors, International Journal of Molecular Sciences, 2010, 11, 329-353.
11. Hosseinnezhad, M., Moradian, S., Gharanjig, K., Afshar Taromi, F., Synthesis and characterisation of eight organic dyes for dye sensitised solar cells, Material Technology, 2014, 29, 112-117.
12. Quintana, M., Marinado, T., Nonomura, K., Boschloo, G., Hagfeldt, A., Organic chromophore-sensitized ZnO solar cells:Electrolyte-dependent dye desorption and band-edge shifts, Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 159-163.
13. حسین­ نژاد، م.، مرادیان، س.، قرنجیگ، ک.، بررسی خواص فوتولتاییک سلول­های خورشیدی بر پایه مواد رنگزای ایندولینی، نشریه علمی-پژوهشی علوم و فناوری رنگ، 1394، 9، 307-312.
14. Hallas, G., Towns, A.D., Dyes derived from aminothiophenes, Dyes and Pigments, 1997, 33, 319-336.
15. Shaki, H., Gharanjig, K., Rouhani, S., Khosravi, A., Synthesis and photophysical properties of some novel fluorescent dyes based on naphthalimide derivatives, Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 44-52.
16. Keis, K., Lindgren, J., Lindquist, S.E., Hagfeldet, A., Studies of the Adsorption Process of Ru Complexes in Nanoporous ZnO Electrodes, Langmuir, 2000, 16, 4688-4694.
17. Andrienko, D., Cyclic Voltammetry, John Wiely & Sons publication, New York. 2008, 3-12.
18. Redmond, G., Fitzmaurice, D., Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nanoaqueius solvent, The Journal of Physical Chemistry, 1993, 97, 1426-1430.
19. Liu, Y., Hagfeldt, A., Xiao, X.R., Lindquist, S. E., Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cells, Solar Energy Materials and Solar Cells, 1998, 55, 267-281.
20. Fredin, K., Nissfolk, J., Boschloo, G., Hagfeldet, A., The influence of cations on charge accumulation in dye-sensitized solar cells, Journal of Electroanalytical Chemistry, 2007, 609, 55-60.
21. Bisquert, J., Fabregat-santiago, F., Mora-Sero, I., Belmonte, G., Gimennez, S., Electron lifetime in dye-sensitized solar cells: Theory and interpretation of measurement, The Journal of Physical Chemistry, 2009, 113, 17278-17296. 
22. Ching, Y., Chen, R., Shen, P., Chen, P., Guo, T., Extension lifetime for dye-sensitized solar cells through multiple dye absorption/desorption process, Journal of Power Sources, 2013, 225, 257-262.