Authors

Islamic Azad University, Department of Electrical, Biomedical and Mechatronics Engineering, Qazvin, Iran.

Abstract

In this paper, the TCO/a-Si:H(n)/µc-Si:H(i)/c-Si(p)/µc-Si:H(i)/BSF/TCO/Ag Bifacial HIT (Heterojunction with intrinsic thin-layer) solar cells was analyzed and designed by AFORS-HET Software. We consider the emitter and BSF layers thickness is constant, then the influences of wafer and intrinsic layer thickness, Densities of interface defects (Dit), and using three different types BSF layer and compare the output from these three types of structure with structure without the BSF layer, Solar cell efficiency is studied And the best available mode for optimum cell is selected. It is noteworthy that according to the simulation results, use a layer of intrinsic microcrystalline layer of a-Si: H (n) / c-Si (p) and c-Si (p) / a-Si: H (p +) Density of states and combined carriers reduce, Increase the efficiency of silicon solar cells is the numerical value of 28%.

Keywords

  1. ف. اعتبار و ف. بهزادی.، سلول‌های خورشیدی، مقدمه‌ای بر خواص اساسی نیمه رساناها.، دانشگاه شیراز دانشکده علوم پایه گروه فیزیک.
  2. Tucci, M et al., Comparison of amorphous/crystalline heterojunction solar cells based on n and p-type crystalline silicon., Thin Solid Films, 2004, 355, pp. 451–452.
  3. Ying, Xu et al., Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers., J Non-Cryst Solids, 2006,
  4. Munoz, D et al., Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV., Thin Solid Films,2006 511–512, 415–419.
  5. Kleider, JP et al., Electronic and structural properties of the amorphous crystalline silicon interface., Thin Solid Films,2009, 517, 6386–91.
  6. Zhao, L et al, Solar Energy Materials & Solar cells, 2008, 673-681.
  7. Lisheng, W. and Fengxiang, C., Simulation of high efficiency bifacial solar cells on n-type substrate whit AFORS-HET., phy.sci.thec,.China, 2011.
  8. Dao, V.A. et al., Simulation and study of the influence of the buffer intrinsic layer, back surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell., Eng, 2010, 84, 777-783.
  9. Dwivedi, N. et al., Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve _27% , Elsevier, Sol Energy, 2013, 3141.
  10. Vishkasougheh, H.M. and Tunaboylu, B., Simulation of high efficiency silicon sol cells with a heterojunction with microcrystalline intrinsic thin layer., Energy Conv. & Manage., 2013, 72, pp.141–146.
  11. Acevedo, M. et al., Modeling solar cells: a method for improving their efficiency., Eng.
  12. Como, N.H. and Acevedo, A.M., Simulation of heterojunction solar cells with AMPS-1D., Energy, 2010, 62-67.
  13. Stangle, R. et al., AFORS-HET, a numerical pc-program for simulation of heterojunction solar cell, version 1.1 (open-source on demand), to be distributed for public use, Germany.
  14. Stangl, R. et al , AFORS-HET, version 2.2, a numerical computer program for simulation of heterojunction solar cell and measurement., Inst Berlin, Kekuléstr.5, D-12489
  15. Iwaniczko, E. et al., Effective interfaces in silicon heterojunction solar cells., IEEE,
  16. Sharma, M. et al., Optimization of band gap, thickness and carrier concentrations for the development of efficient microcrystalline silicon solar cells A theoretical approach., Sol Energy., 2013, 97, 176185.
  17. Coignus, J et al., Key issues for accurate simulation of a-Si:H/c-Si heterojunction solar cells., Silicon PV Freiburg,2011, 17-20, April.