Authors

K. N. Toosi University of Technology, Faculty of Electrical Engineering, Tehran, Iran.

Abstract

In this paper, to improve the electronic parameters of silicon nanowires, the influence of As and P dopants are investigated. These electronic parameters include transmission spectra, mobility, mean free path and energy band diagram. To study the conduction mechanism and mobility of the Sinanowires, carrier transport along the long nanowires in presence of many defects (including dopant, vacancy, disorderly and surface roughness) has been investigated. In this paper, to simplify the calculations, short Si nanowires with small amount of defects are considered.
Therefore, short length silicon nanowires have been doped by As and P and the effects of the dopants have been analyzed. Simulation results demonstrate that, by increasing the energy, transmission spectra increases. It is shown that mobility decreasesin carrier concentration more than and for concentration less than this value, mobility is approximately constant.

Keywords

  1. Lieber, C. M. One-dimensional nanostructures: chemistry, physics & applications. Solid state communications, 1998, 107.11: 607-616.
  2. Voit, J. One-dimensional Fermi liquids.Reports on Progress in Physics, 1995, 58.9: 977.
  3. Kane, C., Balents, L., & Fisher, M. P. Coulomb interactions and mesoscopic effects in carbon nanotubes. Physical review letters, 1997, 79.25: 5086.
  4. Morales, A. M., &Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science, 1998, 279.5348: 208-211.
  5. Duan, X., Wang, J., &Lieber, C. M.Synthesis and optical properties of gallium arsenide nanowires. Applied Physics Letters, 2000, 76.9: 1116-1118.
  6. Hu, J., Ouyang, M., Yang, P., &Lieber, C. M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature, 1999, 399.6731: 48-51.
  7. Wang, Y., Lew, K. K., Ho, T. T., Pan, L., Novak, S. W., Dickey, E. C., ... & Mayer, T. S.Use of phosphine as an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. Nano letters, 2005, 5.11: 2139-2143.
  8. Vallett, A. L., Minassian, S., Kaszuba, P., Datta, S., Redwing, J. M., & Mayer, T. S. Fabrication and characterization of axially doped silicon nanowire tunnel field-effect transistors. Nano letters, 2010, 10.12: 4813-4818.
  9. S, Understanding substrate-supported atomic-scale nanowires from ab initio theory, 2010, Paderborn, den 28.01.2010, M.Sc.
  10. Pi, X., &Delerue, C. Tight-Binding Calculations of the Optical Response of Optimally P-Doped Si Nanocrystals: A Model for Localized Surface Plasmon Resonance. Physical review letters, 2013, 111.17: 177402.
  11. Khelifi, R., Mathiot, D., Gupta, R., Muller, D., Roussel, M., &Duguay, S. Efficient n-type doping of Si nanocrystals embedded in SiO2 by ion beam synthesis. Applied Physics Letters, 2013, 102.1: 013116.
  12. Khelifi, R., Mathiot, D., Gupta, R., Muller, D., Roussel, M., &Duguay, S. Efficient n-type doping of Si nanocrystals embedded in SiO2 by ion beam synthesis. Applied Physics Letters, 2013, 102.1: 013116.
  13. Gnaser, H., Gutsch, S., Wahl, M., Schiller, R., Kopnarski, M., Hiller, D., & Zacharias, M. Phosphorus doping of Si nanocrystals embedded in silicon oxynitride determined by atom probe tomography. Journal of Applied Physics, 2014, 115.3: 034304.
  14. Markussen, T., Rurali, R., Jauho, A. P., &Brandbyge, M.Scaling theory put into practice: first-principles modeling of transport in doped silicon nanowires. Physical review letters, 2007, 99.7: 076803.
  15. Markussen, T., Jauho, A. P., &Brandbyge, M. Electron and phonon transport in silicon nanowires: Atomistic approach to thermoelectric properties. Physical Review B, 2009, 79.3: 035415.
  16. Markussen, T. Surface disordered Ge–Si core–shell nanowires as efficient thermoelectric materials. Nano letters, 2012, 12.9: 4698-4704.