Authors

1 Department of Material, University of Semnan, Semnan, Iran

2 Department of Biomaterials, nanotechnology and tissue engineering, Advanced Medical Technology Department, Isfahan University of Medical Sciences, Isfahan, Iran

3 Department of Biomedical engineering, Faculty of engineering, University of Isfahan, Isfahan, Iran

4 Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Recently, composite scaffolds prepared by electrospinning have shown desirable properties for tissue engineering applications. In this study, first the nBGs were prepared via the sol-gel technique, then, the electrospun PHB/nBG nanocomposite scaffolds (with 7.5, 10 and 15 wt% of nBGs) were fabricated. The nanoparticles and scaffolds were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction spectrometer (XRD), X-rayfluorescence spectroscopy (XRF), Fourier transform infrared spectroscopy (FTIR). Results showed that nanoparticles with an 
amorphous structure mainly had a particle size of less than 70 nm. All the nano-fibrous scaffolds had a uniform
distribution of interconnected porosities with fiber diameters ranging from 326.1 nm to 1.276 micrometer. Composite
scaffolds having nanoparticle concentrations higher than 7.5 wt%, tend to agglomerate. In addition, the FTIR results
showed a favorable interaction between the polymer and nBGs. Therefore, the proposed PHB/nBG scaffolds prepared
in this study can be considered as good candidates for bone tissue engineering applications

Keywords

  1. Hajali, H., Karbasi, S., Hosseinalipour, M., Rezaie, H. R, "preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate) / bioglass nanoparticles for bone tissue engineering", Journal of Material sience:Materials in Medicine, 2010, 21, 2125-2132.
  2. Nemati Hayati, M. Hosseinalipour, H. R. Rezaie, M.A. Shokrgozar, "Characterization of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds fabricated without the use of organic solvents for bone tissue engineering applications", Materials Science and Engineering: C, 2012, 32, 416-422.
  3. Saadat, A., Behnamghader, A. A., Karbasi, S., Abedi, D., Soleimani, M., Shafiee, A, "Comparison of Acellular and Cellular Bioactivity of Poly 3-hydroxybutyrate/hydroxyapatite Nanocomposite and Poly 3-hydroxybutyrate Scaffolds", Biotechnology and Bioprocess Engineering, 2012.
  4. Hajiali, H., Hosseinalipour, M., Karbasi, S., Shokrgozar, M. A, "The influence of bioglass nanoparticles on the biodegradation and biocompatibility of poly (3-hydroxybutyrate) scaffolds", 2012.
  5. Guo-Qiang Chen, Qiong Wu, "The application of polyhydroxyalkanoates as tissue engineering materials", Biomaterials, 2005, 26, 6565-6578.
  6. H. Taherani, A. H., Zadhoush, A., Karbasi, S, "Preparing nanocomposite fibrous scaffolds of P3HB/nHA for bone tissue engineering", 17thAnnual Conference on Biomedical Engineering, Isfahan, Iran, 2010.
  7. Knowles, J. C., Mahmud, F. A., Hastings, G. W, "Piezoelectric characteristics of a polyhydroxybutyrate-based composite", Clinical Materials, 1990, 8, 155-158.
  8. Mortazavi, V., Mehdikhani Nahrkhalaji, M., Fathi, M. H.,  Mousavi, S. B., Nasr Esfahani, B, "Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria", J Biomed Mater Res A, 2010, 94, 160–168.
  9. Fathi, M.H., Doost Mohammadi, A, "Preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant", Materials Science and Engineering: A, 2008, 474, 128-133.
  10. Guan, D., Chen, Z., Huang, Ch., Lin, Y,"Attachment, proliferation and differentiation of BMSCs on gas-jet/electrospun nHAP/PHB fibrous scaffolds", Applied Surface Science, 2008, 255, 324-327.
  11. Sombatmankhong, K., Sanchavanakit, N., Pavasant, P., Supaphol, P, "Bone Scaffolds from Electrospun Fiber Mats of Poly(3- ydroxybutyrate), Poly(3-Hydroxybutyrate-co-3-hydroxyvalerate) and their Blend", 2007, 48, 1419-1427.
  12. Paşcu, I. E., Stokes, J., McGuinness, B. G, "Electrospun Composites of PHBV, Slk Fibroin and Nano-Hydroxyapatite for Bone Tissue Engineering", Materials Science and Engineering, 2013, 4905–4916.
  13. Taherani, A. H., Zadhoush, A., Karbasi, S., Sadeghi, H., abadi, A, " Scaffold Percolative efficiency: in vitro evaluation of the structural for electrospun mats", Journal of Materials Science: Materials in Medicine, 2010, 21, 2989-2998.
  14. Ghasemi-Mobarakeh, L., Semnani, D., Morshed, M, "A Novel Method for Porosity Measurement of Various Surface Layers of Nanofibers Mat Using Image Analysis for Tissue Engineering Applications", Journal of Applied Polymer Science, 2007, 106, 2536-2542.
  15.   Pappas, G. S., Liatsi, P., Kartsonakis, I. A., Danilidis, I., Kordas, G, "Synthesis and characterization of new SiO2–CaO hollow nanospheres by sol–gel method: Bioactivity of the new system", Journal of Non-Crystalline Solids, 2008, 354, 755-760.

16- ه. حاجی علی، "سنتز و ارزیابی خواص مکانیکی، تخریب پذیری و زیستفعالی داربست­های کامپوزیتی پلی هیدروکسی بوتیرات/نانو ذرات شیشه زیست فعال جهت مهندسی بافت استخوان"، دانشکده مهندسی مواد، دانشگاه علم و صنعت ایران،1389.

17- Shajan, X. S., Mahadevan, C," FT-IR spectroscopic and thermal studies on pure and impurity added calcium tartrate tetrahydrate crystals", Cryst Res Technol, 2005, 40, 598–602.

18- Xua, J., Guoa, B. H., Yanga, R., Wub, Q., Chenb, G. Q., Zhang, Z. M, "In situ FTIR study on melting and crystallization of Polyhydroxyalkanoates".Polymer, 2002, 43, 6893-6899.

19- ز. ناظمی، "بررسی اثر ضدباکتریایی نانوذرات شیشه زیست­فعال و روی - کلسیم فسفات دوفازی"، دانشکده مهندسی مواد، دانشگاه سمنان، 1392.

20- ا. حیدرخان تهرانی، " ساخت داربست­های نانوکامپوزیتی پلی هیدروکسی بوتیرات / هیدروکسی آپاتیت به روش الکتروریسی و به منظور استفاده در مهندسی بافت "، دانشکده مهندسی

  1. 21- ا. نساجی، دانشگاه صنعتی اصفهان،.1389.