Authors

School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

In this study, Cu30-Ni70 alloy were synthesized by mechanical alloying. Different concentrations of carbon nanotubes were then distributed in the alloy to fabricate Cu-Ni/CNT nanocomposites. X-ray diffraction, scanning electron microscopy, vibrating sample magnetometer and 4point probe standard techniques were used to investigate the characteristics of the samples. XRD results of the alloy sample revealed that, homogeneous Cu30-Ni70 alloy was formed after 5 h of milling. The SEM micrographs of the specimens showed that CNTs have a significant effect on structural refinement of the nanocomposites. The finest microstructure was obtained in the sample containing 5 wt% CNTs. Decreasing the electrical resistivity values of the nanocomposites due to increasing the CNT contents showed that CNTs have been uniformly distributed in the samples. More ever, the distribution of CNTs in the matrix decreases the saturation magnetization and increases the coercivity of the nanocomposites.

Keywords

1. Esawi. A. M. K., Farag. M. M., Materials &Design, 2007, 28, 2349-2401.
2. Harris. P. J. F., International Materials Reviews, 2004, 49 (1), 31-43.
3. Bakshi. S. R., Lahiri. D., Agarwal. A., International Materials Reviews, 2010, 55 (1), 41- 64.
4. Uddin. S. M., Mahmud. T., Wolf. Ch., Glanz. C., Kolaric. I., Volkmer. Ch., Holler. H., Wienecke. U., Roth. S., Fecht. H. J., Composite Science and Technology, 2010, 70, 2253-2257.
5. Chu. K., Wu. Q., Jia. Ch., Liang. X., Nie. J., Tian. W., Gai. G., Guo. H., Composite Science and Technology, 2010, 70, 298-304.
6. Li. H., Misra. A., Zhu. Y., Horita. Z., Koch. C. C., Holesinger. T. G., Materials Science and Engineering A, 2009, 523, 60-64.
7. Kim. K. T., Cha. S. I., Hong. S. H., Materials Science and Engineering A, 2007, 449-451, 46-50.
8. George. R., Kashyap. K. T., Rahul. R., Yamdagni. S., Scripta Materialia, 2005, 53, 1159-1163.
9. Bahmanpour. H., Youssef. K. M., Scattergood. R. O., Koch. C. C., Journal of Materials Science, 2011, 46, 6316-6322.
10. Mondal. B. N., Basumallick. A., Chattopadhyay. P. P., Materials Chemistry and Physics, 2008, 110, 490-493.
11. Ban. I., Stergar. J., Drofenik. M., Ferk. G., Makovec. D., Journal of Magnetism and Magnetic Materials, 2011, 323, 2254-2258.
12. Williams. E. H., Physical Review, 1931, 38, 828- 832 
13. Surynaarayana. C., Marcel Dekker, USA, New York, 200414. Pérez-Bustamante. R., Pérez-Bustamante. F., Estrada-Guel. I., Santillán-Rodríguez. C. R., Matutes-Aquino. J. A., Herrera-Ramírez. J. M., Miki-Yoshida. M., Martínez-Sánchez. R., Powder
Technology, 2011, 212, 390-396.
15. Li. H., Misra. A., Horita. Z., Koch. C. C., Mara. N. A., Dickerson. P. O., Zhu. Y., APPLIED PHYSICS LETTERS, 2009, 95, 071907.
16. Daoush. W. M., Lim. B. K., Mo. Ch. B., Nam. D. H., Hong. S. H., Materials Science and Engineering A, 2009, 513-514, 247-253.
17. Zheng. Zh., Xu. Bo., Huang. Lu., He. Li., Ni. X., Solid State Sciences, 2008, 10, 316-320.
18. Zhuang. H. L., Zheng. G. P., Soh. A. K., Computational Materials Science, 2008, 43, 823- 828.