Authors

School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran

Abstract

Friction stir processing was carried out on an AZ31 substrate with and without introduction of nano-sized TiC powder. Clusters of TiCwere found in the fabricated layer with a non-uniform distribution. Applied additional passes resulted in gradual break-up of TiC clusters; a nano-composite layer with a uniform dispersion of nano-sized TiC reinforcements in a matrix of fine grains (~3mm) was achieved after three further passes. This layerexhibited a micro hardness and yield strength of ~91HV and 290MPa, respectively. These values are found to be ~1.5 and 1.3 times of those of the as-received AZ31 substrate, respectively.Enhancement of mechanical properties is attributed to dispersion of nano-sized hard reinforcements in a matrix of fine grains. The layer produced without introduction of TiC powder showed a microstructure of fine grains (~5.5mm). However, it exhibited a lower micro hardness and yield strength than those of the as-received AZ31; this softening is related to dissolution of an intermetallic compound phase during the thermo-mechanical phenomena associated with friction stir processing.

Keywords

  1. Mordike, B. L., Ebert, T., Magnesium, Properties Applications Potential, Materials Science and Engineering A. 302 (2001) 37–45.
  2.  Zhiye, H., Yang Liu, X., Review of Recent Studies in Magnesium Matrix Composites, Materials Science and Engineering A. 39 (2004) 6153–6171. 
  3.  Paskaramoorthy, R., Bugarin, S., Reid, R., Effect of an Interphase Layer on the Dynamic Stress Concentration in a Mg-matrix Surrounding a SiCparticle, Compound Structure. 9 (2009) 451–460.
  4.  Lianxi, H.,Erde, W., Fabrication and Mechanical Properties of SiCw/ZK51A Magnesium Matrix Composite by Two-step Squeeze Casting, Materials Scienceand Engineering A. 278 (2000) 267.
  5.  Thomas, W. M., Nicholas, E. D., Need-ham, J. C., Much, M. G., Optimum Processing and Tool Controls for Three- dimensional Friction Stir, GB Patent Application, No 9125978.8. (1991).
  6.  ShafieiZarghani, A., Kashani-Bozorg, S. F., ZareiHanzaki, A., Ultrafine Grained 6082 Aluminum Alloy Fabricated by Friction Stir Processing, Journal of Materials Physics B. 22 [18&19] (2008) 2874-2878.
  7.  Kwon, Y. J., Saito, N., Shigematsu, I., Friction Stir Process as a New Manufacturing Technique of UltrafineGrained  aluminum Alloy, Materials Science Letter. 21 (2002) 1473–1476. 
  8.  Ma, Z. Y., Sharma, S. R., Mishra, R. S., Effect of Friction Stir Processing on the Microstructure of Cast A356 Aluminum, Materials Science and Engineering A. 433 (2006) 269–278.
  9.  Ma, Z. Y., Mishra, R. S., Mahoney, M. W., Superplastic Deformation Behavior of Friction Stir Processed 7075Al Alloy, Acta Materialia. 50 (2006) 4419–4430. 
  10.  Hsu, C. J., Kao, P. W., Ho, N. J., Ultrafine-grained Al–Al2Cu Composite Produced in situ by Friction Stir Processing, Scripta Materialia. 53 (2005) 341– 345. 
  11.  Wang, W., Shi, Q. Y., Liu, P., Li, H. K., Li, T., A Novel Way to Produce Bulk SiCpReinforced Aluminum Metal Matrix Composites by Friction Stir Processing, Journal of Materials Processing Technology. 209 (2009) 2099–2103.
  12.  Mishra, R. S., Ma, Z. Y., Charit, I., Friction Stir Welding and Processing, Materials Science and Engineering A. 341(2003) 307–310. 
  13.  Azizieh, M., Kokabi, A. H., Abachi, P., Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of
    AZ31/Al2O3NanocompositesFabricated by Friction Stir Processing, Materials and Design. 32 (2011) 2034–2041.
  14.  Zohoor,M., BesharatiGivi, M. K., Salami, P., Effect of Processing Parameters on Fabrication of Al–Mg/Cu Composites via Friction Stir Processing, Materials and Design. 39 (2012) 358– 365.
  15.  Krajewski, A, D’Alessio, L., De Maria, G., Physiso-Chemical and Thermo physical Properties of Cubic Binary Carbides, Crystal Research and Technology. 33 (1998) 341–374. 
  16.  Zener, C. S., Grains, Phases and Inter- faces: An Interpretation of Micro- structure, Transactions of AIME. 175 (1948) 45- 48.
  17.  Tomas, J., Adhesion of UltraFineParticles-energy Absorption at Contact, Chemical Engineering Science. 62 (2007) 5925–5939.
  18.  Hamilton, C., Dymek, S., Blicharski, M., A Model of Material Flow During Friction Stir Welding, Materials Characterization, 2008, 59, 1206-1214.
  19.  Heurtier, P., Jones, M. J., Desrayaud, C., Driver, J. H., Montheillet, F., Allehaux, D., Mechanical and Thermal Modelling of Friction Stir Welding,  journal of Materials Processing Technology. 171 (2006) 348-357. 
  20.  C.I. Chang, C.J. Lee, J.C. Huang, Relationship Between Grain Size and Zener–Holloman Parameter
  21.  During Friction Stir Processing in AZ31 Mg Alloys, Scripta Materialia. 51 (2004) 509–514.
  22.  Chang, C. I., Wang, Y. N., Pei, H. R., Lee, C. J., Huang, J. C., On the Hardening of Friction Stir Processed Mg-AZ31 Based Composites with 5– 20% Nano-ZrO2 and Nano-SiO2 Particles, Materials Transaction. 47[12] (2006) 2942–2949.
  23.  Lee, C., Huang, J., Hsieh, P., Mg Based NanoComposites Fabricated by Friction StirProcessing,Scripta Mater. 54 (2006) 1415–1420. 
  24.  Lloyd, D. J., Particle Reinforced Aluminum and Magnesium Matrix Composites, International Materials Review. 39 (1994) 1–24.