Document Type : Original Reaearch Article

Authors

1 Assistant Professor, Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Semnan, Iran

2 MSc, Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Semnan, Iran

Abstract

In this study, wollastonite nanoparticles were synthesized and calcined at different temperatures. The resulting particles were added to a polymeric gelatin containing drug, and the gelatin/wollastonite nanocomposite was prepared as a carrier for gentamicin drug. The structure and morphology of the prepared particles and composites were evaluated using X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). The results showed the synthesis of single-phase wollastonite nanoparticles with sizes less than 10 nanometers, which agglomerate in some regions. The drug delivery rate in phosphate buffer solution, as analyzed by UV analysis at λmax=201 nm, indicated rapid degradation of the composite, with about 60% of the drug delivered in the initial hours and complete delivery after 2 days. Therefore, it can be concluded that the resulting composite is biodegradable and has the potential to be used as filler for bone defects and local drug delivery.a

Keywords

Main Subjects

  1. Amin, A. M., El-Amir, A. A., Karunakaran, G., Kuznetsov, D., & Ewais, E. M. (2021). In-vitro evaluation of wollastonite nanopowder produced by a facile process using cheap precursors for biomedical applications. Ceramics International, 47(13), 18684-18692. https://doi.org/10.1016/j.ceramint.2021.03.201
  2. Arcos, D., Ragel, C. V., & Vallet-Regı, M. (2001). Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials, 22(7), 701-708. https://doi.org/10.1016/S0142-9612(00)00233-7
  3. Aydemir, T., Liverani, L., Pastore, J. I., Ceré, S. M., Goldmann, W. H., & Boccaccini, A. R. (2020). Functional behavior of chitosan/gelatin/silica-gentamicin coatings by electrophoretic deposition on surgical grade stainless steel. Biomaterials, 31(22), 5865-5874. https://doi.org/10.1016/j.msec.2020.111062
  4. Borhan, S., & Esmaeilzadeh, J. (2023). The Effect of Bioactive Glass Synthesis Method on the Flowability and Structural Stability of the Injectable Pastes Prepared from It. Journal of Advanced Materials and Technologies, 12(1), 1-15. https://doi.org/10.30501/jamt.2023.376241.1259
  5. Chang, M. C., Ko, C. C., & Douglas, W. H. (2003). Preparation of hydroxyapatite-gelatin nanocomposite. Biomaterials, 24(17), 2853-2862. https://doi.org/10.1016/S0142-9612(03)00115-7
  6. Chang, M. C., Ikoma, T., & Tanaka, J. (2004). Cross-linkage of hydroxyapatite/gelatin nanocomposite using EGDE. Journal of materials science, 39(16-17), 5547-5550. https://doi.org/10.1023/B:JMSC.0000039284.70028
  7. Chiani, E., Beaucamp, A., Hamzeh, Y., Azadfallah, M., Thanusha, A. V., & Collins, M. N. (2023). Synthesis and characterization of gelatin/lignin hydrogels as quick release drug carriers for ribavirin. International Journal of Biological Macromolecules, 224, 1196-1205. https://doi.org/10.1016/j.ijbiomac.2022.10.205
  8. Das, M. P., Suguna, P. R., Prasad, K. A. R. P. U. R. A. M., Vijaylakshmi, J. V., & Renuka, M. (2017). Extraction and characterization of gelatin: a functional biopolymer. Int. J. Pharm. Pharm. Sci, 9(9), 239. 22159/ijpps.2017v9i9.17618
  9. Dorozhkin, S. V. (2011). Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter, 1(2), 121-164. https://doi.org/10.4161/biom.18790
  10. Hench, L. L., Splinter, R. J., Allen, W. C., & Greenlee, T. K. (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of biomedical materials research, 5(6), 117-141. https://doi.org/10.1002/jbm.820050611
  11. Hench, L. L. (2006). The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 17(11), 967-978. https://doi.org/10.1007/s10856-006-0432-z
  12. Huang, X., & Brazel, C. S. (2001). On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of controlled release, 73(2-3), 121-136. https://doi.org/10.1016/S0168-3659(01)00248-6
  13. Khorsand Zak, A., Yousefi, R., Abd Majid, W. H., & Muhamad, M. R. (2012). Facile synthesis and X-ray peak broadening studies of Zn1− xMgxO nanoparticles. Ceramics International, 38(3), 2059-2064. https://doi.org/10.1016/j.ceramint.2011.10.042
  14. Kim, H. W., Kim, H. E., & Salih, V. (2005). Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds. Biomaterials, 26(25), 5221-5230. https://doi.org/10.1016/j.biomaterials.2005.01.047
  15. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., & Yamamuro, T. (1990). Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic A‐ Journal of biomedical materials research, 24(6), 721-734. https://doi.org/10.1002/jbm.820240607
  16. Kokubo, T. (1998). Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta materialia, 46(7), 2519-2527. https://doi.org/10.1016/S1359-6454(98)80036-0
  17. Lakshmi, R., & Sasikumar, S. (2015). Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite–an in vitro study. International journal of nanomedicine, 10(sup2), 129-136. https://www.tandfonline.com/doi/pdf/10.2147/IJN.S79986
  18. Lao, J., Dieudonne, X., Fayon, F., Montouillout, V., & Jallot, E. (2016). Bioactive glass–gelatin hybrids: Building scaffolds with enhanced calcium incorporation and controlled porosity for bone regeneration. Journal of Materials Chemistry B, 4(14), 2486-2497. https://doi.org/10.1039/C5TB02345A
  19. Mollaqasem, V. K., Ardakani, M. H., & Hesaraki, S. (2013). Effects Bone Regeneration Using Nanotechnology–Calcium Silicate Nano-Composites. Journal of Research in Science, Engineering and Technology, 1(04), 1-4.
  20. Nabipour, Z., Nourbakhsh, M. S., & Baniasadi, M. (2018). Evaluation of ibuprofen release from gelatin/hydroxyapatite/polylactic acid nanocomposites. Iranian Journal of Pharmaceutical Sciences, 14(1), 75-84. https://doi.org/10.22034/IJPS.2018.32051
  21. Palakurthy, S., & Samudrala, R. K. (2019). In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Materials Science and Engineering: C, 98, 109-117. https://doi.org/10.1016/j.msec.2018.12.101
  22. Radev, L., Fernandes, M., Salvado, I., & Kovacheva, D. (2009). Organic/Inorganic bioactive materials Part III: in vitro bioactivity of gelatin/silicocarnotite hybrids. Open Chemistry, 7(4), 721-730. https://doi.org/10.2478/s11532-009-0078-z
  23. Rezwan, K., Chen, Q. Z., Blaker, J. J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413-3431. https://doi.org/10.1016/j.biomaterials.2006.01.039
  24. Rhee, S. H., & Tanaka, J. (1998). Hydroxyapatite coating on a collagen membrane by a biomimetic method. Journal of the American Ceramic Society, 81(11), 3029-3031. https://doi.org/10.1111/j.1151-2916.1998.tb02734.x
  25. Riaz, M., Zia, R., Aslam, S., Qamar, A., Hussain, T., & Anjum, S. (2019). Low temperature synthesis of wollastonite using sol–gel combustion method: In vitro bioactivity evaluation. International Journal of Modern Physics B, 33(10), 1950081. https://doi.org/10.1142/S0217979219500814
  26. Touny, A. H., Laurencin, C., Nair, L., Allcock, H., & Brown, P. (2008). Formation of composites comprised of calcium deficient HAp and cross-linked gelatin. Journal of Materials Science: Materials in Medicine, 19, 3193-3201. https://doi.org/10.1007/s10856-008-3459-5
  27. Vallet-Regí, M. (2006). Revisiting ceramics for medical applications. Dalton Transactions, (44), 5211-5220. https://doi.org/10.1039/B610219K
  28. Wu, C., Zhang, Y., Ke, X., Xie, Y., Zhu, H., Crawford, R., & Xiao, Y. (2010). Bioactive mesopore‐glass microspheres with controllable protein‐delivery properties by biomimetic surface modification. Journal of Biomedical Materials Research Part A, 95(2), 476-485. https://doi.org/10.1002/jbm.a.32873
  29. Zamanian, A., & Banafatizadeh, F. (2022). The effect of adding different percentages of γ-Glycidoxypropyltrimethoxysilane cross-linker on properties of freeze-dried gelatin/chitosan scaffolds with introducing Optimum Condition for Cross-linking the Chitosan/Gelatin Scaffolds for Bone Tis. Journal of Advanced Materials and Technologies. https://doi.org/10.30501/jamt.2022.347635.1229
  30. Zhang, X., Jia, W., Gu, Y., Xiao, W., Liu, X., Wang, D., & Zhou, N. (2010). Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model. Biomaterials, 31(22), 5865-5874. https://doi.org/10.1016/j.biomaterials.2010.04.005
  31. Zhang, Y., Jiang, Y., Han, L., Wang, B., Xu, H., Zhong, Y., & Sui, X. (2018). Biodegradable regenerated cellulose-dispersed composites with improved properties via a pickering emulsion process. Carbohydrate polymers, 179, 86-92. https://doi.org/10.1016/j.carbpol.2017.09.065
  32. Zheng, Y., Wang, C., Zhou, S., & Luo, C. (2021). The self-gelation properties of calcined wollastonite powder. Construction and Building Materials, 290, 123061. https://doi.org/10.1016/j.conbuildmat.2021.123061