Document Type : Original Reaearch Article

Authors

1 PhD Candidate, Department of Ceramic, Materials and Energy Research Center, Karaj, Iran.

2 Professor, Department of Ceramic, Materials and Energy Research Center, Karaj, Iran.

3 Assistant Professor, Alborz Industrial Estates, Ministry of Industry, Mine and Trade, Karaj, Alborz, Iran.

Abstract

: Scarcity of fresh water has nowadays become a global problem and for this reason, a great deal of attention has been given to providing fresh water with new technologies and renewable energy. The purpose of this research is to synthesize Zeolite 13X or NaX powder using the hydrothermal method to identify the parameters affecting the synthesis process as well as the factors affecting the moisture adsorption of the material. Synthesis sample (S1) had the specific surface area of 25.53 m2/gr, total pore volume of 0.38 Cm3/gr, mean pore diameter of 60.1 nm, and water adsorption percentage of 22% of the total powder weight.

Keywords

Main Subjects

 1. Anbia, M., Mohammadi Nejati, F., Jahangiri, M., Eskandari, A., & Garshasbi, V. (2015). Optimization of synthesis procedure for NaX zeolite by Taguchi experimental design and its application in CO2 adsorption. Journal of Sciences, Islamic Republic of Iran, 26(3), 213-222. https://jsciences.ut.ac.ir/article_55309.html
2. Bandarchian, F., & Anbia, M. (2015). Conventional hydrothermal synthesis of nanoporous molecular sieve 13X for selective adsorption of trace amount of hydrogen sulfide from mixture with propane. Journal of Natural Gas Science and Engineering, 26, 1380-1387. https://doi.org/https://doi.org/10.1016/j.jngse.2015.08.019
3. Erten-Kaya, Y., & Cakicioglu-Ozkan, F. (2012). Effect of ultrasound on the kinetics of cation exchange in NaX zeolite. Ultrasonics Sonochemistry, 19(3), 701-706. https://doi.org/https://doi.org/10.1016/j.ultsonch.2011.10.010
4. Ezzeddine, Z., Batonneau-Gener, I., Pouilloux, Y., Hamad, H., & Saad, Z. (2018). Synthetic nax zeolite as a very efficient heavy metals sorbent in batch and dynamic conditions. Colloids and Interfaces, 2(2), 22. https://doi.org/ https://doi.org/10.3390/colloids2020022
5. Hunger, B., Klepel, O., Kirschhock, C., Heuchel, M., Toufar, H., & Fuess, H. (1999). Interaction of water with alkali-metal cation-exchanged X type zeolites: a temperature-programmed desorption (TPD) and X-ray diffraction study. Langmuir, 15(18), 5937-5941. https://doi.org/https://doi.org/10.1021/la981284s
6. Jänchen, J., Ackermann, D., Stach, H., & Brösicke, W. (2004). Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat. Solar energy, 76(1-3), 339-344. https://doi.org/https://doi.org/10.1016/j.solener.2003.07.036.
7. Jansen, K. (2001). Chapter 6 - Microwave technology in zeolite synthesis. In H. Robson & K. P. Lillerud (Eds.), Verified Syntheses of Zeolitic Materials (pp. 39-42). Elsevier Science. https://doi.org/https://doi.org/10.1016/B978-044450703-7/50104-6
8. Magee, H. M., & Sullivan, M. (2010). Nitrogen gas adsorption in zeolites 13X and 5A. Adsorption, 24, 2563-5698. https://www.phys.ufl.edu/reu/2008/reports/magee.pdf
9. Masoudian, S. K., Sadighi, S., & Abbasi, A. (2013). Synthesis and characterization of high aluminum zeolite X from technical grade materials. Bulletin of Chemical Reaction Engineering & Catalysis, 8(1), 54. https://doi.org/http://dx.doi.org/10.9767/bcrec.8.1.4321.54-60
10.  Mezni, M., Hamzaoui, A., Hamdi, N., & Srasra, E. (2011). Synthesis of zeolites from the low-grade Tunisian natural illite by two different methods. Applied Clay Science, 52(3), 209-218. https://doi.org/https://doi.org/10.1016/j.clay.2011.02.017
11. Mgbemere, H., Ekpe, I., & Lawal, G. (2017). Zeolite synthesis, characterization and application areas: a review. https://ir.unilag.edu.ng/handle/123456789/10226
12. Moneim, M. A., & Ahmed, E. A. (2015). Synthesis of faujasite from Egyptian clays: Characterizations and removal of heavy metals. Geomaterials, 5(02), 68. https://doi.org/https://doi.org/10.4236/gm.2015.52007
13. Pal, P., Das, J. K., Das, N., & Bandyopadhyay, S. (2013). Synthesis of NaP zeolite at room temperature and short crystallization time by sonochemical method. Ultrasonics Sonochemistry, 20(1), 314-321. https://doi.org/https://doi.org/10.1016/j.ultsonch.2012.07.012
14. Perkal, M., & Walters, W. (1970). Positron annihilation in synthetic zeolites 4A and 13X. The Journal of Chemical Physics, 53(1), 190-198. https://doi.org/https://doi.org/10.1063/1.1673764
15. Robson, H. (2001). Verified synthesis of zeolitic materials. Gulf Professional Publishing. https://doi.org/10.1016/B978-0-444-50703-7.X5094-7
16. Sayılgan, Ş. Ç., Mobedi, M., & Ülkü, S. (2016). Effect of regeneration temperature on adsorption equilibria and mass diffusivity of zeolite 13x-water pair. Microporous and Mesoporous Materials, 224, 9-16. https://doi.org/https://doi.org/10.1016/j.micromeso.2015.10.041
17. Sharma, P., Song, J.-S., Han, M. H., & Cho, C.-H. (2016). GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties. Scientific Reports, 6(1), 22734. https://doi.org/https://doi.org/10.1038/srep22734.
18. Shokroo, E. J., Farsani, D. J., Meymandi, H. K., & Yadollahi, N. (2016). Comparative study of zeolite 5A and zeolite 13X in air separation by pressure swing adsorption. Korean Journal of Chemical Engineering, 33(4), 1391-1401. https://doi.org/https://doi.org/10.1007/s11814-015-0232-6
19. Stach, H., Mugele, J., Jänchen, J., & Weiler, E. (2005). Influence of cycle temperatures on the thermochemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorption, 11, 393-404. https://doi.org/ https://doi.org/10.1007/s10450-005-5405-x
20. Treacy, M. M., & Higgins, J. B. (2007). Collection of simulated XRD powder patterns for zeolites fifth (5th) revised edition. Elsevier. https://doi.org/10.1016/B978-0-444-53067-7.X5470-7
21. Yan, T., Li, T., Xu, J., & Wang, R. (2019). Water sorption properties, diffusion and kinetics of zeolite NaX modified by ion-exchange and salt impregnation. International Journal of Heat and Mass Transfer, 139, 990-999. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.080
22. Zeng, X., Hu, X., Song, H., Xia, G., Shen, Z.-Y., Yu, R., & Moskovits, M. (2021). Microwave synthesis of zeolites and their related applications. Microporous and Mesoporous Materials, 323, 111262. https://doi.org/https://doi.org/10.1016/j.micromeso.2021.111262
23. Zhang, X., Tang, D., Zhang, M., & Yang, R. (2013). Synthesis of NaX zeolite: Influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals. Powder Technology, 235, 322-328. https://doi.org/https://doi.org/10.1016/j.powtec.2012.10.046
24. Zhao, H., Wang, Z., Li, Q., Wu, T., Zhang, M., & Shi, Q. (2020). Water sorption on composite material “zeolite 13X modified by LiCl and CaCl2”. Microporous and Mesoporous Materials, 299, 110109. https://doi.org/ https://doi.org/10.1016/j.micromeso.2020.110109