Document Type : Original Reaearch Article

Authors

1 Assistant Professor, School of Engineering, Damghan University, Damghan, Semnan, Iran

2 Associated Professor, School of Engineering, Damghan University, Damghan, Semnan, Iran

3 Bachelor of Science, School of Engineering, Damghan University, Damghan, Semnan, Iran

Abstract

 In the present study, an aluminum-silicon hypoeutectic alloy matrix composite reinforced with metallic glass particles was produced through Powder Metallurgy (PM) method. In the first step, the synthesized matrix powder particles with Al-11wt%Si composition were mixed with Fe-based Metallic Glass (FMG) particles as the reinforcements. In the next step, Spark Plasma Sintering (SPS) method was employed to produce composite bulk parts. For comparison, pure aluminum powder particles were sintered under the same conditions. The phase studies confirmed some alterations in the intensity and diffraction angle of crystalline peaks for the composite compared to pure aluminum. Moreover, they remarked a change in the location of the amorphous hump in the XRD pattern of composite, compared to its former location in the amorphous powder particles. Further analysis of the XRD patterns proved the solubility of a large portion of silicon in the aluminum. Microstructural studies, along with quantitative analysis, indicated the homogenous distribution of the FMG particles and undissolved silicon particles in the aluminum matrix. The yield and compressive strength values of the composite sample were obtained as 165 and 289 MPa, respectively, showing a significant increase compared to the pure aluminum sample. Finally, the contributions of different strengthening mechanisms to the enhancement of the composite strength was elaborated.

Keywords

Main Subjects

  1.  

    1. Alizadeh, M., Soltani, M., Kazemzadeh, A., & Ebadzadeh, T. (2020). Investigation of Addition of CNT and Sintering Process on Microstructure and Mechanical Properties of Al-Si3N4-CNT Nano Composite. Journal of Advanced Materials and Technologies, 9(1), 39-48. https://doi.org/10.30501/jamt.2019.99427
    2. Amirkhanlou, S., Ketabchi, M., Parvin, N., Orozco-Caballero, A., & Carreño, F. (2015). Homogeneous and ultrafine-grained metal matrix nanocomposite achieved by accumulative press bonding as a novel severe plastic deformation process. Scripta Materialia, 100, 40-43. https://doi.org/10.1016/j.scriptamat.2014.12.007
    3. Bao, W., Yang, X., Chen, J., Xiang, T., Zhou, T., & Xie, G. (2023). Strengthening and toughening of Cu matrix composites reinforced by metallic glass particles with variable size. International Journal of Plasticity, 103530. https://doi.org/10.1016/j.ijplas.2023.103530
    4. Bardel, D., Perez, M., Nelias, D., Deschamps, A., Hutchinson, C. R., Maisonnette, D., . . . Bourlier, F. (2014). Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy. Acta Materialia, 62, 129-140. https://doi.org/10.1016/j.actamat.2013.09.041
    5. Dwivedi, S. P., Saxena, A., Sharma, S., Singh, G., Singh, J., Mia, M.,... Wojciechowski, S. (2021). Effect of ball-milling process parameters on mechanical properties of Al/Al2O3/collagen powder composite using statistical approach. Journal of Materials Research and Technology, 15, 2918-2932. https://doi.org/10.1016/j.jmrt.2021.09.082
    6. Fathy, A., Omyma, E.-K., & Mohammed, M. M. (2015). Effect of iron addition on microstructure, mechanical and magnetic properties of Al-matrix composite produced by powder metallurgy route. Transactions of Nonferrous Metals Society of China, 25(1), 46-53. https://doi.org/10.1016/S1003-6326(15)63577-4
    7. Ghasali, E., Yazdanirad, R., Asadian, K., & Ebadzadeh, T. (2013). The effect of TiC additive on microstructure and final properties of microwave and conventional sintered Al-SiC composite. Journal of Advanced Materials and Technologies, 2(3), 42-49. https://doi.org/10.30501/jamt.2011.70223
    8. Guan, H., Li, C., Gao, P., Yi, J., Bao, R., Tao, J., . . . Feng, Z. (2020). Fe-based metallic glass particles reinforced Al-7075 matrix composites prepared by spark plasma sintering. Advanced Powder Technology, 31(8), 3500-3506. https://doi.org/10.1016/j.apt.2020.06.038
    9. Guo, X., Louzguine, D. V., Yamaura, S., Ma, L., Sun, W., Hasegawa, M., & Inoue, A. (2002). Hydrogen absorption in Ti–Zr–Ni–Cu amorphous alloy. Materials Science and Engineering: A, 338(1-2), 97-100. https://doi.org/10.1016/S0921-5093(02)00091-6
    10. Jayalakshmi, S., & Gupta, M. (2015). Metallic amorphous alloy reinforcements in light metal matrices. Springer. https://doi.org/10.1007/978-3-319-15016-1
    11. Li, X., Wang, Y., Wang, L., Xu, M., & Yi, J. (2023). High thermal stability of residual amorphous regions in metallic glasses. Materials letters, 340, 134210. https://doi.org/https://doi.org/10.1016/j.matlet.2023.134210
    12. Lin, F., Ren, M., Jia, F., Huo, M., Yang, M., Chen, Z., & Jiang, Z. (2023). Achieving balanced strength-ductility of heterostructured TiC/graphene nanoplatelets (GNPs) reinforced Al matrix composites by tuning TiC-to-GNPs ratio. Composites Communications, 38, 101529. https://doi.org/https://doi.org/10.1016/j.coco.2023.101529
    13. Milligan, J., Vintila, R., & Brochu, M. (2009). Nanocrystalline eutectic Al–Si alloy produced by cryomilling. Materials Science and Engineering: A, 508(1-2), 43-49. https://doi.org/10.1016/j.msea.2008.12.017
    14. Myhr, O. R., Grong, Ø., & Andersen, S. J. (2001). Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Materialia, 49(1), 65-75. https://doi.org/https://doi.org/10.1016/S1359-6454(00)00301-3
    15. Neamţu, B., Chicinaş, H., Marinca, T., Isnard, O., Chicinaş, I., & Popa, F. (2016). Synthesis of amorphous Fe75Si20− xMxB5 (M= Ti, Ta, Zr) via wet mechanical alloying and its structural, thermal and magnetic characterisation. Advanced Powder Technology, 27(2), 461-470. https://doi.org/10.1016/j.apt.2016.01.027
    16. Nieh, T., Wadsworth, J., Liu, C., Ohkubo, T., & Hirotsu, Y. (2001). Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region. Acta Materialia, 49(15), 2887-2896. https://doi.org/10.1016/S1359-6454(01)00218-X
    17. Rezaei, M., Albooyeh, A., Chachei, R., & Malahi, P. (2022). Effect of the spark plasma sintering temperature on the microstructure and mechanical properties of a ceramic/metallic glass reinforced hybrid composite. Journal of Composite Materials, 56(17), 2779-2788. https://doi.org/10.1177/00219983221078188
    18. Rezaei, M., Albooyeh, A., Shayestefar, M., & Shiraghaei, H. (2020). Microstructural and mechanical properties of a novel Al-based hybrid composite reinforced with metallic glass and ceramic particles. Materials Science and Engineering: A, 786, 139440. https://doi.org/10.1016/j.msea.2020.139440
    19. Rezaei, M., Shabestari, S., & Razavi, S. (2019). Investigation on equal-channel angular pressing-induced grain refinement in an aluminum matrix composite reinforced with Al-Cu-Ti metallic glass particles. Journal of Materials Engineering and Performance, 28, 3031-3040. https://doi.org/10.1007/s11665-019-04059-2
    20. Rezaei, M. R., Razavi, S. H., & Shabestari, S. (2017). Study of strengthening mechanisms in an Al-Cu-Ti metallic glass reinforced Al matrix composite consolidated by ECAP process. Journal of Science and Technology of Composites, 4(2), 171-178. https://jstc.iust.ac.ir/article_25119.html?lang=en
    21. Tang, Y., Liu, C., Liu, J., Zhang, C., Chen, H., Shi, Q., . . . Chen, Z. (2023). Improving the ductility of Al matrix composites through bimodal structures: Precise manipulation and mechanical responses to coarse grain fraction. Materials Science and Engineering: A, 145139. https://doi.org/10.1016/j.msea.2023.145139
    22. Wang, W. H., Wang, R. J., Yang, W., Wei, B., Wen, P., Zhao, D., & Pan, M. (2002). Stability of ZrTiCuNiBe bulk metallic glass upon isothermal annealing near the glass transition temperature. Journal of Materials Research, 17(6), 1385-1389. https://doi.org/10.1557/JMR.2002.0206
    23. Wang, Z., Tan, J., Scudino, S., Sun, B., Qu, R., He, J., . . . Eckert, J. (2014). Mechanical behavior of Al-based matrix composites reinforced with Mg58Cu28. 5Gd11Ag2. 5 metallic glasses. Advanced Powder Technology, 25(2), 635-639. https://doi.org/10.1016/j.apt.2013.10.005
    24. Xi, H. H., Ming, W. Q., He, Y., Xie, P., Xu, X. D., Zhang, Z., & Chen, J. H. (2022). Unveiling the fine microstructure of nanoscale composite particles embedded in brittle Si phase in an Al-Si-Cu-Mg alloy. Journal of Alloys and Compounds, 906, 164238. https://doi.org/https://doi.org/10.1016/j.jallcom.2022.164238
    25. Xie, K.-w., Nie, J.-f., Hu, K.-q., Ma, X., & Liu, X.-f. (2022). Improvement of high-temperature strength of 6061 Al matrix composite reinforced by dual-phased nano-AlN and submicron-Al2O3 particles. Transactions of Nonferrous Metals Society of China, 32(10), 3197-3211. https://doi.org/https://doi.org/10.1016/S1003-6326(22)66013-8
    26. Xie, M. S., Suryanarayana, C., Zhao, Y. L., Zhang, W. W., Yang, C., Zhang, G. Q., . . . Wang, Z. (2020). Abnormal hot deformation behavior in a metallic-glass-reinforced Al-7075 composite. Materials Science and Engineering: A, 785, 139212. https://doi.org/https://doi.org/10.1016/j.msea.2020.139212
    1. Xie, X., Yin, S., Raoelison, R.-n., Chen, C., Verdy, C., Li, W., . . . Liao, H. (2021). Al matrix composites fabricated by solid-state cold spray deposition: A critical review. Journal of Materials Science & Technology, 86, 20-55. https://doi.org/https://doi.org/10.1016/j.jmst.2021.01.026
    2. Xu, T., Mei, Q. S., Liao, L. Y., Ma, Y., Chen, Z. H., Wang, Y. C., & Li, J. Y. (2023). A comparative study on the microstructure and strengthening behaviors of Al matrix composites containing micro- and nano-sized B4C particles. Materials Science and Engineering: A, 874, 145066. https://doi.org/https://doi.org/10.1016/j.msea.2023.145066
    3. Yadav, M., Kumaraswamidhas, L. A., & Singh, S. K. (2022). Investigation of solid particle erosion behavior of Al-Al2O3 and Al-ZrO2 metal matrix composites fabricated through powder metallurgy technique. Tribology International, 172, 107636. https://doi.org/https://doi.org/10.1016/j.triboint.2022.107636
    4. Yang, C. M. Y., Li, X., Li, C. J., Peng, Y. Z., Xing, Y., Feng, Z. X., . . . Yi, J. H. (2023). Interface and strengthening mechanisms of Al matrix composites reinforced with in-situ CNTs grown on Ti particles. Materials & Design, 229, 111923. https://doi.org/https://doi.org/10.1016/j.matdes.2023.111923
    5. Zhai, J. T., Gao, W. J., Dong, H. K., Hu, Y.-C., Zhang, T., Zhu, X. G., . . . Liu, L. H. (2022). Novel metal matrix composites reinforced with Zr-based metallic glass lattices. Applied Materials Today, 29, 101649. https://doi.org/https://doi.org/10.1016/j.apmt.2022.101649
    6. Zou, Q., Xu, C., Dong, Z., Wu, D., An, X., & Jie, J. (2023). Deformation behavior and mechanical properties of rolled carbon fiber reinforced Al-matrix composites via protection with Sn layer. Journal of Materials Processing Technology, 315, 117902. https://doi.org/https://doi.org/10.1016/j.jmatprotec.2023.117902