Document Type : Original Reaearch Article

Authors

1 M. Sc Student., Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Tehran, Iran

2 Associate Professor, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Tehran, Iran

3 Assistant Professor, School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Tehran, Iran

4 Professor, Tehran Heart Center, Tehran University of Medical Science, Tehran, Tehran, Iran

Abstract

Injectable hydrogels that mimic heart tissues can be considered a promissing perspective towards the future developments of cardiac tissue engineering. This study aims to fabricate an injectable, thermosensitive hydrogel consisting of chitosan/gelatin/glycerol phosphate. Due to their unique electro-conductivity characteristic, hydrogels can provide a suitable environment to accelerate cardiac cell proliferation. Polyaniline/multi-walled carboxylated carbon nanotube (PAni/c-MWNT) was prepared using Sodium Dodecyl Sulfate (SDS) emulsion. To prevent the interaction between the PAni/c-MWNT nanocomposite and hydrogel, the nanocomposite was coated with gelatin to form polyaniline/carboxylated carbon nanotube/gelatin       (PAni/c-MWNT/G). The PAni/c-MWNT/G nanocomposite was then dispersed to provide electrical signals throughout the hydrogel. The gelation time, gel temperature, and mechanical properties of the hydrogel were measured using a rheometer. FTIR spectroscopy results revealed that the interaction between the aniline and      c-MWNT/G could change the position of the quinone and benzene peaks. The conductivity of hydrogel-containing nanocomposite was found to be higher than that of c-MWNT and PAni. Scanning Electron Microscopy (SEM) confirmed the uniform distribution of PAni/c-MWNT/G nanocomposite throughout the hydrogel. The degradation rate of conductive hydrogel is lower than that of pure hydrogel. The MTT assay test showed the biocompatibility of the cell-hydrogel. Finally, Mesenchymal Stem Cells (MSCs) were cultured in the hydrogels for 14 days. Cell adhesion, cell viability, and proliferation were also examined. This study utilized PAni/c-MWNT/G, for the first time, to enhance the electro-conductivity of chitosan/gelatin/glycerol phosphate hydrogel. This conductive thermosensitive injectable hydrogel can be used to regenerate cardiac tissue and other electroactive tissues.

Keywords

Main Subjects

  1. Peng, Z., Shen, Y., "Study on biological safety of polyvinyl alcohol/collagen hydrogel as tissue substitute (I)", Polymer-Plastics Technology and Engineering, 50, No. 3, (2011), 245-250. https://doi.org/10.1080/03602559.2010.531438
  2. Meyer, U., Handschel, J., Wiesmann, H. P., Meyer, T. eds., Fundamentals of Tissue Engineering and Regenerative Medicine, Vol. 1, Springer Berlin, Heidelberg, (2009). https://doi.org/10.1007/978-3-540-77755-7
  3. Martins, M., Eng, G., Caridade, S. G., "Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering", Biomacromolecules, 15, No. 2, (2014), 635-643. https://doi.org/10.1021/bm401679q
  4. Huang, N. F., Yu, J., Sievers, R., Li, S., Lee, R. J., "Injectable biopolymers enhance angiogenesis after myocardial infarction", Tissue Engineering, 11, No. 11-12, (2005), 1860-1866. https://doi.org/10.1089/ten.2005.11.1860
  5. Crowder, S. W., Liang, Y., Rath, R., Park, A. M., Maltais, S., Pintauro, P. N., Hofmeister, W., Lim, C. C., Wang, X., Sung, H. J., "Poly (ε-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells", Nanomedicine, 8, No. 11, (2013), 1763-1776. https://doi.org/10.2217/nnm.12.204
  6. Baheiraei, N., Yeganeh, H., Ai, J., Gharibi, R., Ebrahimi‐Barough, S., Azami, M., Vahdat, S., Baharvand, H., "Preparation of a porous conductive scaffold from aniline pentamer‐modified polyurethane/PCL blend for cardiac tissue engineering", Journal of Biomedical Materials Research, Part A, 103, No. 10, (2015), 3179-3187. https://doi.org/10.1002/jbm.a.35447
  7. Spinks, G. M., Shin, S. R., Wallace, G. G., Whitten, P. G., Kim, I. Y., Kim, S. I., Kim, S. J., "A novel “dual mode” actuation in chitosan/polyaniline/carbon nanotube fibers", Sensors and Actuators, B: Chemical, 121, No. 2, (2007), 616-621. https://doi.org/10.1016/j.snb.2006.04.103
  8. Jiang, Q., Fu, G., Xie, D., Jiang, S., Chen, Z., Huang, B., Zhao, Y., "Preparation of carbon nanotube/polyaniline nanofiber by electrospinning", Procedia Engineering, 27, (2012), 72-76. https://doi.org/10.1016/j.proeng.2011.12.426
  9. Ding, L., Li, Q., Zhou, D., Cui, H., An, H., Zhai, , "Modification of glassy carbon electrode with polyaniline/multi-walled carbon nanotubes composite: Application to electro-reduction of bromate", Journal of Electroanalytical Chemistry, Vol. 668, (2012), 44-50. https://doi.org/10.1016/j.jelechem.2011.12.018
  10. Blanchet, G. B., Fincher, C. R., Gao, F., "Polyaniline nanotube composites: A high-resolution printable conductor". Applied Physics Letters, 82, No. 8, (2003), 1290-1292. https://doi.org/10.1063/1.1553991
  11. Kondawar, S. B., Deshpande, M. D., Agrawal, S. P., "Transport properties of conductive polyaniline nanocomposites based on carbon nanotubes", International Journal of Composite Materials, 2, No. 3, (2012), 32-36. https://doi.org/10.5923/j.cmaterials.20120203.03
  12. Jeevananda, T., Kim, N. H., Heo, S. B., Lee, J. H., "Synthesis and characterization of polyaniline‐multiwalled carbon nanotube nanocomposites in the presence of sodium dodecyl sulfate", Polymers for Advanced Technologies, V 19, No. 12, (2008), 1754-1762. https://doi.org/10.1002/pat.1191
  13. Zhang, X., Zhang, J., Liu, Z., "Tubular composite of doped polyaniline with multi-walled carbon nanotubes", Applied Physics A, Vol. 80, No. 8, (2005), 1813-1817. htttps://doi.org/10.1007/s00339-003-2491-z
  14. Chogan, F., Mirmajidi, T., Rezayan, A. H., Sharifi, A. M., Ghahary, A., Nourmohammadi, J., Kamali, A., Rahaie, M., "Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing", Acta Biomaterialia, Vol. 113, (2020), 144-163. https://doi.org/10.1016/j.actbio.2020.06.031
  15. Mirmajidi, T., Chogan, F., Rezayan, A. H., Sharifi, A. M., "In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin", International Journal of Pharmaceutics, Vol. 596, (2021), 120213. https://doi.org/10.1016/j.ijpharm.2021.120213
  16. Basiri, Z., Rezayan, A. H., Akbari, B., Aghdam, R. M., Tafti, H. A., "Developing new synthetic biomimetic nanocomposite adhesives: Synthesis and evaluation of bond strength and solubilization", Reactive and Functional Polymers, Vol. 127, (2018), 85-93. https://doi.org/10.1016/j.reactfunctpolym.2018.04.004
  17. Abbasizadeh, N., Rezayan, A. H., Nourmohammadi, J., Kazemzadeh-Narbat, M., "HHC-36 antimicrobial peptide loading on silk fibroin (SF)/hydroxyapatite (HA) nanofibrouscoated titanium for the enhancement of osteoblast and bactericidal functions", International Journal of Polymeric Materials and Polymeric Biomaterials, Vol. 69, No. 10, (2019), 629-639. https://doi.org/1080/00914037.2019.1596913
  18. Oroojalian, F., Jahanafrooz, Z., Chogan, F., Rezayan, A. H., Malekzade, E., Rezaei, S. J. T., Nabid, M. R., Sahebkar, A., "Synthesis and evaluation of injectable thermosensitive penta‐block copolymer hydrogel (PNIPAAm‐PCL‐PEG‐PCL‐PNIPAAm) and star‐shaped poly (CL─ CO─ LA)‐b‐PEG for wound healing applications", Journal of Cellular Biochemistry, Vol. 120, No. 10, (2019), 17194-17207. https://doi.org/1002/jcb.28980
  19. Farboudi, A., Mahboobnia, K., Chogan, F., Karimi, M., Askari, A., Banihashem, S., Davaran, S., Irani, M., "UiO-66 metal organic framework nanoparti- cles loaded carboxymethyl chitosan/poly ethylene oxide/polyurethane core- shell nano fibers for controlled release of doxorubicin and folic acid", International Journal of Biological Macromolecules, Vol. 150, (2020), 178-188, https://doi:1016/j.ijbiomac.2020.02.067
  20. Singh, C., Srivastava, S., Ali, M. A., Gupta, T. K., Sumana, G., Srivastava, A., Mathur, R. B., Malhotra, B. D., "Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection”, Sensors and Actuators, B: Chemical, Vol. 185, (2013), 258-264. https://doi.org/10.1016/j.snb.2013.04.040
  21. Kar, P., Choudhury, A., "Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors”, Sensors and Actuators, B: Chemical, Vol. 183, (2013), 25-33. https://doi.org/10.1016/j.snb.2013.03.093
  22. Wu, T. M., Lin, Y. W., Liao, C. S., "Preparation and characterization of polyaniline/multi-walled carbon nanotube composites", Carbon, Vol. 43, No. 4, (2005), 734-740. https://doi.org/10.1016/j.carbon.2004.10.043
  23. Wu, J., Su, Z. G., Ma, G. H., "A thermo-and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate", International Journal of Pharmaceutics, Vol. 315, No. 1-2, (2006), 1-11. https://doi.org/10.1016/j.ijpharm.2006.01.045
  24. Cheng, Y. H., Yang, S. H., Su, W. Y., Chen, Y. C., Yang, K. C., Cheng, W. T. K., Wu, S. C., Lin, F. H., "Thermosensitive chitosan–gelatin–glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: An in vitro study", Tissue Engineering, Part A, Vol. 16, No. 2, (2010), 695-703. https://doi.org/10.1089/ten.tea.2009.0229
  25. Cheng, Y. H., Yang, S. H., Lin, F. H., "Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration", Biomaterials, Vol. 32, No. 29, (2011), 6953-6961. https://doi.org/10.1016/j.biomaterials.2011.03.065
  26. Yang, K. C., Wu, C. C., Cheng, Y. H., Kuo, T. F., Lin, F. H., "Chitosan/gelatin hydrogel prolonged the function of insulinoma/agarose microspheres in vivo during xenogenic transplantation. in transplantation proceedings", Elsevier, Vol. 40, No. 10, (2008), 3623-3626. https://doi.org/10.1016/j.transproceed.2008.06.092
  27. Haider, S., Park, S. Y., Saeed, K., Farmer, B. L., "Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes", Sensors and Actuators, B: Chemical, Vol. 124, No. 2, (2007), 517-528. https://doi.org/10.1016/j.snb.2007.01.024
  28. Dizaji, B. F., Azerbaijan, M. H., Sheisi, N., Goleij, P., Mirmajidi, T., Chogan, F., Irani, M., Sharafian, F., "Synthesis of PLGA/chitosan/zeolites and PLGA/chitosan/metal organic frameworks nanofibers for targeted delivery of Paclitaxel toward prostate cancer cells death", International Journal of Biological Macromolecules, Vol. 164, (2020), 1461-1474. https://doi.org/10.1016/j.ijbiomac.2020.07.228
  29. Saladin, K. S., Miller, L., Anatomy & Physiology, New York, WCB/McGraw-Hill, (1998), 1248.
  30. Kempe, S., Metz, H., Bastrop, M., Hvilsom, A., Contri, R. V., Mäder, K., "Characterization of thermosensitive chitosan-based hydrogels by rheology and electron paramagnetic resonance spectroscopy", European Journal of Pharmaceutics and Biopharmaceutics, Vol. 68, No. 1, (2008), 26-33. https://doi.org/10.1016/j.ejpb.2007.05.020
  31. Zhao, Q. S., Ji, Q. X., Xing, K., Li, X. Y., Liu, C. S., Chen, X. G., "Preparation and characteristics of novel porous hydrogel films based on chitosan and glycerophosphate", Carbohydrate Polymers, Vol. 76, No. 3, (2009), 410-416. https://doi.org/10.1016/j.carbpol.2008.11.020
  32. Roth, B. J., "The electrical conductivity of tissues", The Biomedical Engineering Handbook, Second Edition., 2 Volume Set, edited by Bronzino, J. D., Boca Raton, CRC Press, (2000).
  33. Fathinejad, J. H., Javidfar, M. R., "Study on effect of aluminum nitrate on conductivity properties of hydrogel nanocomposite based on acrylic acid/CNTs", Journal of Advanced Materials and Technologies (JAMT), Vol. 7, No. 2, (2018), 57-61. https://doi.org/10.30501/jamt.2018.91467
  34. Malekimusavi, H., Ghaemi, A., Masoudi, G., Chogan, F., Rashedi, H., Yazdian, F., Omidi, M., Javadi, S., Haghiralsadat, B. F., Teimouri, M., Faal Hamedani, N., "Graphene oxide‐l‐arginine nanogel: A pH‐sensitive fluorouracil nanocarrier", Biotechnology and Applied Biochemistry, Vol. 66, No. 5, (2019), 772-780. https://doi.org/10.1002/bab.1768
  35. Cheng, Y. H., Hung, K. H., Tsai, T. H., Lee, C. J., Ku, R. Y., Chiu, A. W. H., Chiou, S. H., Liu, C. J. L., "Sustained delivery of latanoprost by thermosensitive chitosan–gelatin-based hydrogel for controlling ocular hypertension", Acta Biomaterialia, Vol. 10, No. 10, (2014), 4360-4366. https://doi.org/10.1016/j.actbio.2014.05.031
  36. Manafi, S., Mirjalili, F., Joughehdoust, S., "Synthesis of FAp, Forsterite, and FAp/Forsterite nanocomposites by sol-gel method", Advanced Ceramics Progress, Vol. 6, No. 2, (2020), 35-42. https://doi.org/10.30501/acp.2020.109549