Document Type : Original Reaearch Article

Authors

1 M. Sc. Student., Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Markazi, Iran

2 Professor, Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, Markazi, Iran

3 Associate Professor, Department of Material Engineering, Faculty of Engineering, Malayer University, Malayer, Hamedan, Iran

Abstract

Energy storage is one of the most important issues in the scientific community. Among the other significant concerns in this field are the economic and environmental issues. Chemical deposition has attracted the attention of a number of researchers owing to its advantages such as its binder-free, fast, and simple electrode, compared to the electrochemical synthesis, as well as its one-step production and coating. In this research, a coating of Nickel hexacyanoferrate nanoparticles (NiHCF) was deposited on a Stainless-Steel Mesh (SSM) substrate through the chemical deposition method. The electrode was analyzed through X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM) methods based on which, the presence of nickel hexacyanoferrate nanoparticles on the substrate was confirmed. The electrochemical performance of the binder-free NiHCF electrode as the supercapacitor electrode in a solution containing 0.5 M sodium Sulfate (NaOH) aqueous electrolyte (vs. Ag/AgCl) electrode was evaluated using the cyclic voltammetry and galvanostatic charge/discharge tests. According to the findings, the mentioned electrodes were characterized by a high specific capacitance of 465.7 F g-1 and current density of 1 A g-1, an appropriate rate capability and structure. The current research primarily aimed to obtain an electrode with high specific capacity and acceptable stability, and the obtained results highlighted its wide applications as the supercapacitor.

Keywords

Main Subjects

  1. Parvizi, P., Kazazi, M., "Binder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries", Advanced Ceramics Progress (ACERP), Vol. 4, (2018), 27-31. https://doi.org/10.30501/ACP.2018.91122
  2. Chen, J., Huang, K., Liu, S., "Insoluble metal hexacyanoferrates as supercapacitor electrodes", Electrochemistry Communications, Vol. 10, (2008), 1851-1855. https://doi.org/10.1016/j.elecom.2008.07.046
  3. Mason, T. J., Lorimer, J. P., Applied sonochemistry: The uses of power ultrasound in chemistry and processing, Vol. 10, Weinheim, Wiley-VCH, (2002). https://doi.org/1002/352760054X
  4. Heli, H., Jafarian, M., Mahjani, M. G., Gobal, F., "Electro-oxidation of methanol on copper in alkaline solution", Electrochim Acta, Vol. 49, No. 27, (2004), 4999-5006. https://doi.org/10.1016/j.electacta.2004.06.015
  5. Jafarian, M., Mahjani, M. G., Heli, H., Gobal, F., Khajehsharifi, H., Hamedi, M. H., "A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode", Electrochim Acta, Vol. 48, No. 23, (2003), 3423-3429. https://doi.org/10.1016/S0013-4686(03)00399-2
  6. Bard, A. J., Faulkner, L. R., Electrochemical methods: Fundamental and applications, Department of Chemistry and Biochemistry, University of Texas at Austin, Vol. 20, New York, (2002), 91-92.
  7. Kulesza, P. J., Malik, M. A., Berrettoni, M., Giorgetti, M., Zamponi, S., Schmidt, R., Marassi, R.,"Electrochemical charging, counter cation accommodation, and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate", The Journal of Physical Chemistry B, Vol. 102, No. 11, (1998), 1870-1876. https://doi.org/10.1021/jp9726495
  8. Miecznikowski, K., Chojak, M., Steplowska, W., Malik, M. A., Kulesza, P. J.,"Microelectrochemical electronic effects in two-layer structures of distinct Prussian blue type metal hexacyanoferrates", Journal of Solid State Electrochemistry, Vol. 8, No. 10, (2004), 868-875. https://doi.org/10.1007/s10008-004-0555-4
  9. Kulesza, P. J., Malik, M. A., Skorek, J., Miecznikowski, K., Zamponi, S., Berrettoni, M., Marassi, R., "Hybrid metal cyanometallates electrochemical charging and spectrochemical identity of heteronuclear nickel/cobalt hexacyanoferrate", Journal of Electrochemical Society, Vol. 146, No. 10, (1999), 3757-3761. https://doi.org/10.1149/1.1392545
  10. de Tacconi, N. R., Rajeshwar, K., Lezna, R. O., "Metal hexacyanoferrates: Electrosynthesis, in situ characterization, and applications", Chemistry of Materials, Vol. 15, No. 16, (2003), 3046-3062. https://doi.org/10.1021/cm0341540
  11. Jassal, V., Shanker, U., Shankar, S., "Synthesis, characterization and applications of nano-structured metal hexacyanoferrates: A Review", Journal of Environmental Analytical Chemistry, Vol. 2, No. 128, (2015), 2. https://doi.org/10.41722380-2391.1000128
  12. Ali, S. R., Chandra, P., Latwal, M., Jain, S. K., Bansal, V. K., “Growth of cadmium hexacyanidoferrate(III) nanocubes and its application in voltammetric determination of morphine”, Bulletin of the Chemical Society of Japan, Vol. 84, No. 12, (2011), 1355-1361. https://doi.org/10.1246/bcsj.20110117
  13. Ghasemi, S., Ojani, R., Ausi, S., "Bipotential deposition of nickel–cobalt hexacyanoferrate nanostructure on graphene coated stainless steel for supercapacitors", International Journal of Hydrogen Energy, Vol. 39, No. 27, (2014), 14918-14926. https://doi.org/10.1016/j.ijhydene.2014.07.026
  14. Wu, M. S., Lyu, L. J., Syu, J. H., "Copper and nickel hexacyanoferrate nanostructures with graphenecoated stainless steel sheets for electrochemical supercapacitors", Journal of Power Sources, Vol. 297, (2015), 75-82. https://doi.org/10.1016/j.jpowsour.2015.07.101
  15. Yuan, Y., Bin, D., Dong, X., Wang, Y., Wang, C., Xia Y., "Intercalation pseudocapacitive nanoscale nickel hexacyanoferrate@carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery", ACS Sustainable Chemistry & Engineering, Vol. 8, No. 9, (2020). https://doi.org/10.1021/acssuschemeng.9b06588
  16. Yang, Y. J., Dong, J., Zhang, C., Ding, Z., Li, Y., Ren, H., Guo, F., "Phosphotungstic acid assisted growth of nickel hexacyanoferrate on Ni foam for binder-free supercapacitor electrode", Journal of Electroanalytical Chemistry, Vol. 895, (2021), 115537. https://doi.org/10.1016/j.jelechem.2021.115537
  17. Functional coatings: Research areas, KIT IAM-Applied Materials Physics Group, University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association. http://www.iam.kit.edu/awp/english/261.php
  18. Hall, P. J., Mirzaeian, M., Fletcher, S. I., Sillars, F. B., Rennie, A. J., Shitta-Bey, G. O., Carter, R., "Energy storage in electrochemical capacitors: Designing functional materials to improve performance", Energy & Environmental Science, Vol. 3, No. 9, (2010), 1238-1251. https://doi.org/10.1039/C0EE00004C
  19. Yang, M., Jiang, J., Lu, Y., He, Y., Shen, G., Yu, R., "Functional histine/nickel hexacyanoferrate nanotube assembly for biosensor applications", Biomaterials, Vol. 28, No. 23, (2007), 3408-3417. https://doi.org/10.1016/j.biomaterials.2007.04.020
  20. Ismail, I. M., El-Sourougy, M. R., Moneim, N., Aly, H. F., "Preparation, characterization, and utilization of potassium nickel hexacyanoferrate for the separation of cesium and cobalt from contaminated waste water", Journal of RadioanalyticaL and Nuclear Chemistry, Vol. 237, No. 1-2, (1998), 97-102. https://doi.org/10.1007/bf02386669
  21. Wessells, C. D., Peddada, S. V., Huggins, R. A., Cui, Y., "Nickel hexacyanoferrate nanoparticle electrodrs for aqueous sodium and potassium ion batteries", Nano Letters, Vol. 11, No. 12, (2011), 5421-5425. https://doi.org/10.1021/nl203193q
  22. Kulesza, P. J., Malik, M. A., Schmidt, R., Smolinska, A., Miecznikowski, K., Zamponi, S., Czervinski, A., Berrettoni, M., Marassi, R., "Electrochemical preparation and characterization of electrodes modified with mixed hexacyanoferrates of nickel and palladium", Journal of Electroanalytical Chemistry, 487, No. 1, (2000), 57-65. https://doi.org/10.1016/S0022-0728(00)00156-X
  23. Zhu, X., Tao, H., Li, M., "Co-precipitation synthesis of nickel cobalt hexacyanoferrate for binder-free high-performance supercapacitor electrodes", International Journal of Hydrogen Energy, Vol. 45, No. 28, (2020), 14452-14460. https://doi.org/10.1016/j.ijhydene.2020.02.188
  24. Babu, R. S., de Barros, A. L. F., de Almeida Maier, M., da Motta Sampaio, D., Balamurugan, J., Lee, J. H., "Novel polyaniline/manganese hexacyanoferrate nanoparticles on carbon fiber as binder-free electrode for flexible supercapacitors", Composites Part B: Engineering, Vol. 143, (2018), 141-147. https://doi.org/10.1016/j.compositesb.2018.02.007
  25. Faryabi, M., Kazazi, M., "Electrochemical deposition of manganese hexacyanoferrate nanoparticles on a graphite substrate for supercapacitor application", Journal of Advanced Materials and Technologiesn (JAMT), Vol. 8, (2019) , 13-20. (In Farsi). https://doi.org/10.30501/JAMT.2019.93225