Document Type : Original Reaearch Article


1 Ph. D. Student., Department of Medical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Tehran, Iran

2 Assistant Professor, Department of Medical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Tehran, Iran

3 Associate Professor, Department of Tissue Engineering, Faculty of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Tehran, Iran


Recently, corneal transplantation has been proposed as an effective treatment for irreversible corneal damage which facilitates access to healthy corneas; however, lack of allografts made the treatment subject to many limitations in medicine. In this regard, this study aimed to produce multilayer nanofiber scaffolds for corneal epithelial layer tissue engineering with scaffold compounds of fibroin silk/collage-EGF. The samples were first prepared and identified from the perspective of engineering and biology applications. The results of this study showed that an alternative tissue with a suitable thickness and structure of nanofibers with suitable engineering and biological properties was successfully prepared. In addition, a scaffold was prepared in this research for tissue engineering of the corneal epithelial layer based on silk fibroin and collagen containing aloe vera and epithelial growth factor as the contributing factors and stimuli for better corneal repair. For this purpose, nanofiber three-layer scaffolds were prepared by a combination of electrospinning and electrospray methods characterized by engineering features, such as Scanning Electron Microscope (SEM), to study the degradability for their weight loss, water contact angle, and growth factor. Release as well as static and dynamic mechanical properties were also investigated. Biological characteristics such as cell binding and scaffold differentiation potential were further explored. The results of this study showed the successful preparation of an alternative with a suitable thickness and structure of nanofibers with suitable engineering and biological properties. The obtained results confirmed the production of a proper scaffold with suitable thickness and nanofiber structure. Therefore, the prepared product could potentially be used as a suitable alternative for repairing the damaged corneal epithelial layer.


Main Subjects

  1. Ma, X. -Y., Bao, H. -J., Cui, L., Zou, J., "The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage", PLOS ONE, Vol. 8, No. 10, (2013), e76103. https://org/10.1371/journal.pone.0076103
  2. Borene, M. L., Barocas, V. H., Hubel, A., "Mechanical and cellular changes during compaction of a collagen-sponge-based corneal stromal equivalent", Annals of Biomedical Engineering, Vol. 32, No. 2, (2004), 274-283.
  3. Lin, H., Li, W., Dong, N., Chen, W., Liu, J., Chen, L., Yuan, H., Geng, Z., Liu, Z., "Changes in corneal epithelial layer inflammatory cells in aqueous tear–deficient dry eye", Investigative Ophthalmology & Visual Science, Vol. 51, No. 1, (2010), 122-128.
  4. Holan, V., Javorkova, E., "Mesenchymal stem cells, nanofiber scaffolds and ocular surface reconstruction", Stem Cell Reviews and Reports, Vol. 9, No. 5, (2013), 609-619.
  5. Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R., Saldaña-Koppel, D. A., Quiñones-Olvera, L. F., "Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine", BioMed Research International, (2015), 1-15.
  6. Ciolino, J. B., Dohlman, C. H., "Biologic keratoprosthesis materials", International Ophthalmology Clinics, Vol. 49, No. 1, (2009), 1.
  7. Griffith, M., Harkin, D. G., "Recent advances in the design of artificial corneas", Current Opinion in Ophthalmology, Vol. 25, No. 3, (2014), 240-247.
  8. Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., Lu, H., Richmond, J., Kaplan, D. L., "Silk-based biomaterials", Biomaterials, Vol. 24, No. 3, (2003), 401-416.
  9. Hazra, S., Nandi, S., Naskar, D., Guha, R., Chowdhury, S., Pradhan, N., Kundu, S. C., Konar, A., "Non-mulberry silk fibroin biomaterial for corneal regeneration", Scientific Reports, Vol. 6, No. 1, (2016), 1-13.
  10. Surjushe, A., Vasani, R., Saple, D. G., "Aloe vera: A short review", Indian Journal of Dermatology, Vol. 53, No. 4, (2008), 163-166.
  11. Atiba, A., Wasfy, T., Abdo, W., Ghoneim, A., Kamal, T., Shukry, M., "Aloe vera gel facilitates re-epithelialization of corneal alkali burn in normal and diabetic rats", Clinical Ophthalmology, Vol. 9, (2015), 2019-2026.
  12. Maurice, D. M., "The structure and transparency of the cornea", The Journal of Physiology, Vol. 136, No. 2, (1957), 263-286.
  13. Peterson, J. L., Ceresa, B. P., "Epidermal growth factor receptor expression in the corneal epithelium", Cells, Vol. 10, No. 9, (2021), 2409.
  14. Bayyoud, T., Thaler, S., Hofmann, J., Maurus, C., Spitzer, M. S., Bartz-Schmidt, K. U., Szurman, P., Yoeruek, E., "Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells", Current Eye Research, Vol. 37, No. 3, (2012), 179-186.
  15. Madden, P. W, Lai, J. N., George, K. A., Giovenco, T., Harkin, D. G., Chirila, T. V., "Human corneal endothelial cell growth on a silk fibroin membrane", Biomaterials, Vol. 32, No. 17, (2011), 4076-4084.
  16. Rezvani, M., Alahgholiyan, E., Roshangar, L., "Synthesis of a macroporous glass-ceramic scaffold containing fluorapatite crystalline phase for bone substitutes", Advanced Ceramics Progress, Vol. 6, No. 3, (2020), 47-54.
  17. Last, J. A., Thomasy, S. M., Croasdalec, C. R., Russell, P., Murphy, C. J., "Compliance profile of the human cornea as measured by atomic force microscopy", Micron, Vol. 43, No. 12, (2012), 1293-1298.
  18. Khalid, H., Iqbal, H., Zeeshan, R., Nasir, M., Sharif, F., Akram, M., Irfan, M., Khan, F. A., Chaudhry, A. A., Khan, A. F., "Silk fibroin/collagen 3D scaffolds loaded with TiO2 nanoparticles for skin tissue regeneration", Polymer Bulletin, Vol. 78, No. 12, (2020), 7199-7218.
  19. Yonesi, M., Garcia-Nieto, M., Guinea, G. V., Panetsos, F., Pérez-Rigueiro, J., González-Nieto, D., "Silk fibroin: An ancient material for repairing the injured nervous system", Pharmaceutics, Vol. 13, No. 3, (2021), 429.
  20. Sadtler, K., Sing, A., Wolf, M. T., Wang, X., Pardoll, D. M., Elisseeff, J. H., "Design clinical translation and immunological response of biomaterials in regenerative medicine", Nature Reviews Materials, Vol. 1., No. 7, (2016), 1-17.
  21. Michelacci, Y. M., "Collagens and proteoglycans of the corneal extracellular matrix", Brazilian Journal of Medical and Biological Research, Vol. 36, No. 8, (2003), 1037-1046.
  22. Huo, Y., Jiang, B., Zheng, X., Chen, W., Xie, X., "Epidermal growth factor protects against ultraviolet damage in human corneal epithelial cells through inhibiting autophagy", International Journal of Clinical Experimental Pathology, Vol. 9, No. 9, (2016), 9008-9017.
  23. Shoulders, M. D., Raines, R. T., "Collagen structure and stability", The Annual Review of Biochemistry, Vol. 78, (2009), 929-958.
  24. Higa, K., Takeshima, N., Moro, F., Kawakita, T., Kawashima, M., Demura, M., Shimazaki , J., Asakura, T., Tsubota, K., Shimmura, S., "Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets", Journal of Biomaterials Science, Polymer Edition, Vol. 22, No. 17, (2012), 2261-2276.
  25. Teichmann, J., Valtink, M., Nitschke, M., Gramm, S., Funk, R. H., Engelmann, K., Werner, C., "Tissue engineering of the corneal endothelium: A review of carrier materials", Journal of Functional Biomaterials, Vol. 4, No. 4, (2013), 178-208.
  26. Kong, B., Mi. S., "Electrospun scaffolds for corneal tissue engineering: A Review", Materials, Vol. 9, No. 8, (2016), 614.
  27. Merrett, K., Fagerholm, P., McLaughlin, C. R., Dravida, S., Lagali, N., Shinozaki, N., Watsky, M. A., Munger, R., Kato, Y., Li, F., Marmo, C. J., Griffith, M., "Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen", Investigative Ophthalmology & Visual Science, Vol. 49, No. 9, (2008), 3887-3894.
  28. Curto, E. M., Labelle, A., Chandler, H. L., "Aloe vera: An in vitro study of effects on corneal wound closure and collagenase activity", Veterinary Ophthalmology, Vol. 17, No. 6, (2014), 403-410.
  29. Bardag-Gorce, F., Oliva, J., Wood, A., Niihara, H., Makalinao, A., Sabino, S., Pan, D., Thropay, J., Sota, H., Niihara, Y., "Microarray analysis of oral mucosal epithelial cell sheet", Tissue Engineering and Regenerative Medicine, Vol. 10, No. 6, (2013), 362-370.
  30. Connon, C. J., Nakamura, T., Quantock, A. J., Kinoshita, S., "The persistence of transplanted amniotic membrane in corneal stroma", American Journal of Ophthalmology, Vol. 141, No. 1, (2006), 190-192.
  31. Koizumi, N., Fullwood, N. J., Bairaktaris, G., Inatomi, T., Kinoshita, S., Quantock, A. J., "Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane", Investigative Ophthalmology & Visual Science, Vol. 41, No. 9, (2000), 2506-2513.
  32. Akter, F., "Principles of tissue engineering" Tissue engineering made easy, Academic Press, (2016), 3-16.
  33. Esmaeilzadeh, J., Hesaraki, S., Borhan, S., "In vivo assessments of the poly (d/l) lactide/polycaprolactone/bioactive glass nanocomposites for bioscrews application", Advanced Ceramics Progress, Vol. 7, 3, (2021), 17-22.
  34. Khalili, A., Naeimi, F., Fakhrizadeh, A. A., "Electrodeposited hydroxyapatite/graphene oxide/zirconia oxide composite coatings: Characterization and antibacterial ctivity", Advanced Ceramics Progress, Vol. 6, No. 4, (2020), 8-14.
  35. Holan, V., Javorkova, E., Trosan, P., "The growth and delivery of mesenchymal and limbal stem cells using copolymer polyamide 6/12 nanofiber scaffolds", Corneal Regenerative Medicine, Springer, (2013), 187-199.
  36. Oyegoke, T., Obadiah, E., Adah, F., Oguche, J. E., Timothy, G. T., Mantu, I. A., Ado, A. D., "Trends of progress in setting up biorefineries in developing countries: A review of bioethanol exploration in Nigeria", Journal of Renewable Energy and Environment (JREE), Vol. 9, No. 1, (2021), 35-50.
  37. Aydram, R., Haji Agha Alizade, H., Rasouli, M., Shadidi, B., "Simplex centroid mixture design for optimizing and promoting the anaerobic co-digestion performance of sheep blood and cheese whey", Journal of Renewable Energy and Environment (JREE), Vol. 8, No. 3, (2021), 8-15.
  38. Derakhshani, A., Hesaraki, S., Nezafati, N., Azami, M., “Fabrication and evaluation of physical and biological properties of hydroxyethyl cellulose/hyaluronic acid-based scaffolds used for second-degree (partial-thickness) burns wounds healing", Journal of Advanced Materials and Technologies (JAMT), Vol. 9, No. 4, (2021), 35-46.