Document Type : Original Reaearch Article

Authors

1 Researcher, School of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran, Tehran, Iran

2 Professor, School of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran, Tehran, Iran

Abstract

In the present study, gelatin/chitosan/zinc oxide hydrogels were prepared through solvent casting method in combination with lyophilization. In addition, the effects of adding 1.5 wt % zinc oxide nanoparticles on the microstructural and physico-chemical characteristics of genipin-crosslinked scaffolds were evaluated. The porosity of the newly formed hydrogels increased from about 93 up to 94 % (P < 0.05). Images taken by a Scanning Electron Microscope (SEM) illustrates the formation of a porous microstructure of distinct interconnected holes with an average size of 200 microns. Water absorption capacity of nanocomposite hydrogels at room temperature and 37 °C decreased from 1043 to 988 and 1206 to 1040 %, respectively; however, a significant increase in their initial swelling rate was observed. Upon adding nanoparticles, the in vitro degradation of scaffolds occurred faster than usual. According to the findings of this research, gelatin/chitosan/zinc oxide hydrogels which is characterized by favorable microstructural characteristics (i.e., uniform distribution of interconnected pores) and high initial swelling rate can be used as a potential substrate in the field of tissue engineering.

Keywords

Main Subjects

  1. El-Sherbiny, I. M., Yacoub, M. H., "Hydrogel scaffolds for tissue engineering: Progress and challenges", Global Cardiology Science & Practice, 2013, No. 3, (2013), 316-342. https://doi.org/10.5339/gcsp.2013.38
  2. Li, J., Mooney, D. J., "Designing hydrogels for controlled drug delivery", Nature Reviews Materials, Vol. 1, No. 12, (2016), 16071, 1-17. https://doi.org/10.1038/natrevmats.2016.71
  3. Narayanaswamy, R., Torchilin, V. P., "Hydrogels and their applications in targeted drug delivery", Molecules, Vol. 24, No. 3, (2019), 603, 1-21. https://doi.org/10.3390/molecules24030603
  4. Sultana, N., Hassan, M. I., Ridzuan, N., Ibrahim, Z., Soon, C. F., "Fabrication of gelatin scaffolds using thermally induced phase separation technique", International Journal of Engineering, Vol. 31, No. 8, (2018), 1302-1307. http://doi.org/10.5829/ije.2018.31.08b.19
  5. Bello, A. B., Kim, D., Kim, D., Park, H., Lee, S. H., "Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications", Tissue Engineering Part B: Reviews Revision, Vol. 26, No. 2, (2020), 164-180. https://doi.org/10.1089/ten.TEB.2019.0256
  6. Yang, G., Xiao, Z., Long, H., Ma, K., Zhang, J., Ren, X., Zhang, J., "Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods", Scientific Reports, Vol. 8, No. 1, (2018), 1-13. https://doi.org/10.1038/s41598-018-20006-y
  7. Song, Y., Nagai, N., Saijo, S., Kaji, H., Nishizawa, M., Abe, T., "In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery", Materials Science & Engineering: C, Materials for Biological Applications, Vol. 88, (2018), 1-12. https://doi.org/10.1016/j.msec.2018.02.022
  8. Vlăsceanu, G., Crica, L., Pandele, A., Ionita, M., "Graphene oxide reinforcing genipin crosslinked chitosan-gelatin blend films", Coatings, Vol. 10, No. 2, (2020), 189, 1-15. https://doi.org/10.3390/coatings10020189
  9. Wang, L., Li, M., Li, X., Liu, J., Mao, Y., Tang, K., "A biomimetic hybrid hydrogel based on the interactions between amino hydroxyapatite and gelatin/gellan gum", Macromolecular Materials and Engineering, Vol. 305, No. 9, (2020), 2000188, 1-9. https://doi.org/10.1002/mame.202000188
  10. Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R., Saldaña-Koppel, D. A., Quiñones-Olvera, L. F., "Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine", BioMed Research International, Vol. 2015, (2015), 821279, 1-16. https://doi.org/10.1155/2015/821279
  11. Nieto-Suárez, M., López-Quintela, M. A., Lazzari, M., "Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly", Carbohydrate Polymers, Vol. 141, (2016), 175-183. https://doi.org/10.1016/j.carbpol.2015.12.064
  12. Shahin, A., Ramazani S. A., A., Mehraji, S., Eslami, H, "Synthesis and characterization of a chitosan/gelatin transparent film crosslinked with a combination of EDC/NHS for corneal epithelial cell culture scaffold with potential application in cornea implantation", International Journal of Polymeric Materials and Polymeric Biomaterials, Vol. 78, (2020), 1-11. https://doi.org/10.1080/00914037.2020.1865349
  13. Sarem, M., Moztarzadeh, F., Mozafari, M., "How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues?", Carbohydrate Polymers, Vol. 93, No. 2, (2013), 635-643. https://doi.org/10.1016/j.carbpol.2012.11.099
  14. Manickam, B., Sreedharan, R., Elumalai, M., "'Genipin'-the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: An overview", Current Drug Delivery, Vol. 11, No. 1, (2014), 139-145. https://doi.org/10.2174/15672018113106660059
  15. Nozari, M., Gholizadeh, M., Zahiri Oghani, F., Tahvildari, K., "Studies on novel chitosan/alginate and chitosan/bentonite flexible films incorporated with ZnO nano particles for accelerating dermal burn healing: In vivo and in vitro evaluation", International Journal of Biological Macromolecules, Vol. 184, (2021), 235-249. https://doi.org/10.1016/j.ijbiomac.2021.06.066
  16. Yadollahi, M., Gholamali, I., Namazi, H., Aghazadeh, M., "Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels", International Journal of Biological Macromolecules, Vol. 74, (2015), 136-141. https://doi.org/10.1016/j.ijbiomac.2014.11.032
  17. Murali, S., Kumar, S., Koh, J., Seena, S., Singh, P., Ramalho, A., Sobral, A. J. F. N., "Bio-based chitosan/gelatin/Ag@ZnO bionanocomposites: Synthesis and mechanical and antibacterial properties", Cellulose, Vol. 26, No. 9, (2019), 5347-5361. https://doi.org/10.1007/s10570-019-02457-2
  18. Mishra, P., Mishra, H., Ekielski, A., Talegaonkar, S., Vaidya, B., "Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications", Drug Discovery Today, Vol. 22, No. 12, (2017), 1825-1834. https://doi.org/10.1016/j.drudis.2017.08.006
  19. Moshayedi, S., Sarpoolaky, H., Khavandi, A., "Fabrication, swelling behavior, and water absorption kinetics of genipin-crosslinked gelatin–chitosan hydrogels" Polymer Engineering & Science, Vol. 61, No. 12, (2021), 3094-3103. https://doi.org/10.1002/pen.25821
  20. Li, Y., Sun, S., Gao, P., Zhang, M., Fan, C., Lu, Q., Li, C., Chen, C., Lin, B., Jiang, Y., "A tough chitosan-alginate porous hydrogel prepared by simple foaming method", Journal of Solid State Chemistry, Vol. 294, (2021), 121797, 1-27. https://doi.org/10.1016/j.jssc.2020.121797
  21. Zhang, Y., Wang, Q. S., Yan, K., Qi, Y., Wang, G. F., Cui, Y. L., "Preparation, characterization, and evaluation of genipin crosslinked chitosan/gelatin three‐dimensional scaffolds for liver tissue engineering applications", Journal of Biomedical Materials Research Part A, Vol. 104, No. 8, (2016), 1863-1870. http://doi.org/ 10.1002/jbm.a.35717
  22. Sarem, M., Moztarzadeh, F., Mozafari, M., Shastri, V. P., "Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human miniscus tissue", Materials Science & Engineering: C, Materials for Biological Applications, Vol. 33, No. 8, (2013), 4777-4785. https://doi.org/10.1016/j.msec.2013.07.036
  23. Rastegar Ramsheh, M., Behnamghader, A., Khanlarkhani, A., "Preparation and characterization of microspheres based on gelatin-sodium alginate-genipin by the formation of polyelectrolyte complex", Journal of Advanced Materials and Technologies (JAMT), Vol. 9, No. 3, (2020a), 63-78. https://doi.org/10.30501/jamt.2021.214580.1070
  24. Perelshtein, I., Ruderman, E., Perkas, N., Tzanov, T., Beddow, J., Joyce, E., Mason, T. J., Blanes, M., Mollá, K., Patlolla, A., Frenkel, A. I., Gedanken, A., "Chitosan and chitosan–ZnO-based complex nanoparticles: Formation, characterization, and antibacterial activity", Journal of Materials Chemistry: B, Vol. 1, No. 14, (2013), 1968-1976. https://doi.org/10.1039/C3TB00555K
  25. Tanwar, A., Date, P., Ottoor, D., "ZnO Nps incorporated gelatin grafted polyacrylamide hydrogel nanocomposite for controlled release of ciprofloxacin", Colloid and Interface Science Communications, Vol. 42, (2021), 100413, 1-9. https://doi.org/10.1016/j.colcom.2021.100413
  26. Amjadi, S., Emaminia, S., Heyat Davudian, S., Pourmohammad, S., Hamishehkar, H., Roufegarinejad, L., "Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles", Carbohydrate Polymers, Vol. 216, (2019), 376-384. https://doi.org/10.1016/j.carbpol.2019.03.062
  27. Amira, N., Zain, N., "The effect of ZnO nanoparticles on the physical, mechanical, and antibacterial properties of chitosan/gelatin hydrogel films", Jurnal Teknologi, Vol. 81, (2019), 21-26. https://doi.org/10.11113/jt.v81.12605
  28. Zhang, M, Qiao, X., Han, W., Jiang, T., Liu, F., Zhao, X., "Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing", Carbohydrate Polymers, Vol. 266, (2021), 118100, 1-9. https://doi.org/ 10.1016/j.carbpol.2021.11810
  29. Dinu, M., Dragan, E. S., "Macroporous hydrogels: preparation, properties, and applications", Hydrogels, (2018), 51-85. https://doi.org/10.1007/978-981-10-6077-9_3
  30. Singhal, R., Gupta, K., "A review: tailor-made hydrogel structures (classifications and synthesis parameters)", Polymer-Plastics Technology and Engineering, Vol. 55, (2015), 1-19. https://doi.org/10.1080/03602559.2015.1050520