Document Type : Original Reaearch Article

Authors

1 M. Sc. Student., Department of Ceramic, Materials and Energy Research Centere, Karaj, Iran

2 Associate Professor, Department of Ceramic, Materials and Energy Research Centere, Karaj, Iran

3 Associate Professor, Department of Cemiconductor, Materials and Energy Research Centere, Karaj, Iran

4 Assistant Professor, Department of Cemiconductor, Materials and Energy Research Centere, Karaj, Iran

5 Associate Professor, Faculty of Material Science and Engineering Department of Engineering, Imam Hossein University, Tehran, Tehran, Iran

Abstract

Abstract In this study, the density, compression and mechanical properties of Si3N4-SiO2 composite with different ratios of 0, 3, 5 and 7 wt.% Eu2O3 and 10 wt.% SiO2 as additive were stdudied. Production of composite ceramics in this study was first done by preparing the powder using mixing and milling for 12 h, then forming by cold pressing method and cold isostatic pressing method and finally sintering by spark plasma sintering process. The samples were incubated at 1750 °C for 15 min at a heating rate of 100 °C / min and a pressure of 40 MPa at maximum temperature under vacuum atmosphere. After the grinding process, the particle size of the initial powder mixture was reduced by about 19 %. The results show that after the cold isostatic pressing process, the relative density of the samples increased by 14.67 %. The high amount of beta phase of silicon nitridein the 7%Eu2O3 sample indicates the sufficient amount of liquid phase during the sintering process and the improvement of the dissolution, diffusion and precipitation mechanism, and finally increase the rate of phase transformation of alpha to beta. The highest hardness of 21.61 GPa was observed in 5% Eu2O3 sample, which indicates high density, advancement of dissolution-diffusion mechanism and deposition of nitride compounds in sintering process. Eu2O3 sample due to the presence of glass phase with it can show a amount of toughness 6.1 MPa.m1/2compared to other samples.

Keywords

Main Subjects

  1. Klemm, H., "Silicon nitride for high‐temperature applications", Journal of the American Ceramic Society, Vol. 93, No. 6, (2010), 1501-1522. https://doi.org/10.1111/j.1551-2916.2010.03839.x
  2. Riley, F. L., "Silicon nitride and related materials", Journal of the American Ceramic Society, Vol. 83, No. 2, (2004), 245-265. https://doi.org/10.1111/j.1151-2916.2000.tb01182.x
  3. Zou, C., Zhang, C., Li, B., Wang, S., Cao, F., "Microstructure and properties of porous Silicon nitride ceramics prepared by gel-casting and gas pressure sintering", Materials & Design, Vol. 44, (2013), 114-118. https://doi.org/10.1016/j.matdes.2012.07.056
  4. Greskovich, C., Prochazka, S., "Stability of Si3N4 and liquid phase(s) during sintering", Journal of the American Ceramic Society, Vol. 64, No. 7, (1981), C-96-C-97. https://doi.org/10.1111/j.1151-2916.1981.tb09885.x
  5. Greskovich, C., Prochazka, S., "Dense and near-net-shape fabrication of Si3N4 ceramics", Materials Science and Engineering: A, Vol. 500, No. 1-2, (2009), 130-149. https://doi.org/10.1016/j.msea.2008.09.015
  6. Manavizadeh, N., Khodayari, A., Asle Soleimani, E., "Deposition and determination of the properties of silicon nitride films in argon and nitrogen atmospheres", Journal of Advanced Materials and Technologis (JAMT), Vol. 3, (2008), 175-182. https://doi.org/10.30501/JAMT.2010.70135
  7. Miyakawa, N., Sato, H., Maeno, H., Takahashi, H., "Characteristics of reaction-bonded porous silicon nitride honeycomb for DPF substrate", JSAE Review, 24, No. 3, (2003), 269-276. https://doi.org/10.1016/S0389-4304(03)00050-X
  8. Miyakawa, N., Sato, H., Maeno, H., Takahashi, H., "Microstructure and mechanical properties of silicon nitride ceramics with controlled porosity", Journal of the American Ceramic Society, Vol. 85, No. 6, (2002), 1512-1516. https://doi.org/10.1111/j.1151-2916.2002.tb00305.x
  9. Alizadeh, M., Soltani, M., Kazemzadeh, A., Ebadzadeh, T., "Investigation of addition of CNT and sintering process on microstructure and mechanical properties of Al-Si3N4-CNT nano composite", Journal of Advanced Materials and Technologis (JAMT), Vol. 9, No. 1, (2020), 39-48. https://doi.org/30501/JAMT.2019.99427
  10. Ganesh, I., "Development of β-SiAlON based ceramics for radome applications", Processing and Application of Ceramics, Vol. 5, No. 3, (2011), 113-138. https://doi.org/2298/PAC1103113G
  11. Lukianova, O. A., Sirota, V. V., "Dielectric properties of silicon nitride ceramics produced by free sintering", Ceramics International, Vol. 43, No. 11, (2017), 8284-8288. https://doi.org/1016/j.ceramint.2017.03.161
  12. Li, X., Yin, X., Zhang, L., Cheng, L., Qi, Y., "Mechanical and dielectric properties of porous Si3N4–SiO2 composite Ceramics", Materials Science and Engineering, 500, No. 1-2, (2009), 63-69. https://doi.org/10.1016/j.msea.2008.09.066
  13. ShuQin, L., YuChen, P., ChangQing, Y., JiaLu, L., "Mechanical and dielectric properties of porous Si2N2O–Si3N4 in situ composites", Ceramics International, Vol. 35, No. 5, (2009), 1851-1854. https://doi.org/1016/j.ceramint.2008.10.021
  14. Liang, G., Sun, G., Bi, J., Wang, W., Yang, X., Li, Y., "Mechanical and dielectric properties of functionalized boron nitride nanosheets/silicon nitride composites", Ceramics International, Vol. 47, No. 2, (2021), 2058-2067. https://doi.org/10.1016/j.ceramint.2020.09.038
  15. Yuan, B., Wang, G., "Preparation and properties of Si3N4/BN ceramic composites", Procedia Engineering, Vol. 27, (2012), 1292-1298. https://doi.org/10.1016/j.proeng.2011.12.584
  16. Jia, D. C., Zhou, Y., Lei, T. C., "Ambient and elevated temperature mechanical properties of hot-pressed fused silica matrix composite", Journal of the European Ceramic Society, Vol. 23, No. 5, (2003), 801-808. https://doi.org/1016/S0955-2219(02)00156-5
  17. Kićević, D., Gašić, M., Marković, D., "A statistical analysis of the influence of processing conditions on the properties of fused silica", Journal of the European Ceramic Society, Vol. 16, No. 8, (1996), 857-864. https://doi.org/1016/0955-2219(96)80453-5
  18. Rhee, S. H., Do Lee, J., Kim, D. Y., "Effect of α-Si3N4 initial powder size on the microstructural evolution and phase transformation during sintering of Si3N4 ceramics", Journal of the European Ceramic Society, Vol. 20, No. 11, (2000), 1787-1794. https://doi.org/10.1016/S0955-2219(00)00053-4
  19. Abe, H., Hotta, T., Naito, M., Shinohara, N., Okumiya, M., Kamiya, H. Uematsu, K., "Origin of strength variation of silicon nitride ceramics with CIP condition in a powder compaction process", Powder Technology, Vol. 119, No. 203, (2001), 194-200. https://doi.org/10.1016/S0032-5910(00)00421-6
  20. Ling, G., Yang, H., "Pressureless sintering of silicon nitride with magnesia and yttria", Materials Chemistry and Physics, Vol. 90, No. 1, (2005), 31-34. https://doi.org/10.1016/j.matchemphys.2004.08.041
  21. Li, Y., Kim, H. N., Wu, H., Kim, M. J., Ko, J. W., Park, Y. J., Huang, Z., Kim, H. D., "Microstructure and thermal conductivity of gas-pressure-sintered Si3N4 ceramic: The effects of Y2O3 additive content", Journal of the European Ceramic Society, Vol. 41, No. 1, (2021), 274-283. https://doi.org/10.1016/j.jeurceramsoc.2020.08.035
  22. Liao, S., Zhou, L., Jiang, C., Wang, J., Zhuang, Y., Li, S., "Thermal conductivity and mechanical properties of Si3N4 ceramics with binary fluoride sintering additives", Journal of the European Ceramic Society, Vol. 41, No. 14, (2021), 6971-6982. https://doi.org/10.1016/j.jeurceramsoc.2021.07.035
  23. Lu, T., Wang, T., Jia, Y., Ding, M., Shi, Y., Xie, J., Fan, L., "Fabrication of high thermal conductivity silicon nitride ceramics by pressureless sintering with MgO and Y2O3 as sintering additives", Ceramics International, Vol. 46, No. 17, (2020), 27175-27183. https://doi.org/10.1016/j.ceramint.2020.07.198
  24. Zhang, Y., Yao, D., Zuo, K., Xia, Y., Yin, J., Liang, H., Zeng, Y. P., "Effects of different types of sintering additives and post-heat treatment (PHT) on the mechanical properties of SHS-fabricated Si3N4 ceramics", Ceramics International, Vol. 47, No. 16, (2021), 22461-22467. https://doi.org10.1016/j.ceramint.2021.04.255
  25. Han, Y., Xie, Z., Li, S., Zhu, T., Wu, W., An, D., Zhai, F., "Optimum sintering temperature of high quality silicon nitride ceramics under oscillatory pressure", Ceramics International, Vol. 44, No. 6, (2018), 6949-6952. https://doi.org/10.1016/j.ceramint.2018.01.126
  26. Kumar, A., Gokhale, A., Ghosh, S., Aravindan, S., "Effect of nano-sized sintering additives on microstructure and mechanical properties of Si3N4 ceramics", Materials Science and Engineering, Vol. 750, (2019), 132-140. https://doi.org/10.1016/j.msea.2019.02.020
  27. Liu, W., Tong, W., Lu, X., Wu, S., "Effects of different types of rare earth oxide additives on the properties of silicon nitride ceramic substrates", Ceramics International, Vol. 45, No. 9, (2019), 12436-12442. https://doi.org/10.1016/j.ceramint.2019.03.176
  28. Yu, F., Yang, J., Delsing, A. C., Hintzen, B. H., "Preparation, characterization and luminescence properties of porous Si3N4 ceramics with Eu2O3 as sintering additive", Journal of Luminescence, 130, No. 12, (2010), 2298-2304. https://doi.org/10.1016/j.jlumin.2010.07.008
  29. Jeong, K., Tatami, J., Iijima, M., Nishimura, T., "Spark plasma sintering of silicon nitride using nanocomposite particles”, Advanced Powder Technology, Vol. 28, No. 1, (2017), 37-42. https://doi.org/10.1016/j.apt.2016.06.027
  30. Lukianova, O. A., Novikov, V. Y., Parkhomenko, A. A., Sirota, V. V., Krasilnikov, V. V., "Microstructure of spark plasma-sintered silicon nitride ceramics", Nanoscale Research Letters, Vol. 12, No. 1, (2017), 293. https://doi.org/10.1186/s11671-017-2067-z
  31. Yang, J., Yang, J. F., Shan, S. Y., Gao, J. Q., Ohji, T., "Effect of sintering additives on microstructure and mechanical properties of porous silicon nitride ceramics", Journal of the American Ceramic Society, Vol. 89, No. 12, (2006), 3843-3845. https://doi.org/10.1111/j.1551-2916.2006.01294.x
  32. Han, W., Li, Y., Chen, G., Yang, Q., "Effect of sintering additive composition on microstructure and mechanical properties of silicon nitride", Materials Science and Engineering: Vol. 700, )2017(, 19-24. https://doi.org/10.1016/j.msea.2017.05.100
  33. Park, C., Bang, K. S., Park, D. S., Kim, H. D., Danyluk, S., "Pressureless-sintering of reaction bonded silicon nitride containing cordierite", Journal of Ceramic Processing Research, Vol. 13, 3, (2012), 226-230. http://www.jcpr.or.kr/journal/archive/view/1127
  34. Liu, X. J., Huang, Z. Y., Pu, X. P., Sun, X. W., Huang, L. P., "Influence of planetary high-energy ball milling on microstructure and mechanical properties of silicon nitride ceramics", Journal of the American Ceramic Society, Vol. 88, No. 5, (2005), 1323-1326. https://doi.org/10.1111/j.1551-2916.2005.00227.x
  35. Li, H., Sun, F., Dong, T., Xu, X., "The effect of particle size of silicon nitride powder on properties of silicon nitride ceramic balls", IOP Conference Series: Materials Science and Engineering, Vol. 678, No. 1, (2019), 012041. https://iopscience.iop.org/article/10.1088/1757-899X/678/1/012041/pdf
  36. Wang, L. J., Yang, X., Liu, X. J., Jiao, Z., Huang, Z. R., "Effects of particle size on densification behavior of Si3N4 ceramics", Key Engineering Materials, 697, (2016), 182-187. https://doi.org/10.4028/www.scientific.net/KEM.6
  37. Lukianova, O. A., Sirota, V. V., "Dielectric properties of silicon nitride ceramics produced by free sintering", Ceramics International, Vol. 43, No. 11, (2017), 8284-8288. https://doi.org/10.1016/j.ceramint.2017.03.161
  38. Luo, J. T., Zhang, C. X., Ma, H. F., Wang, G., "Cold isostatic pressing–normal pressure sintering behavior of amorphous nano-sized silicon nitride powders", Advanced Materials Research, 454, (2012) 17-20. https://doi.org/10.4028/www.scientific.net/AMR.454.17
  39. Kitayama, M., Hirao, K., Kanzaki, S., "Effect of rare earth oxide additives on the phase transformation rates of Si3N4", Journal of the American Ceramic Society, Vol. 89, No. 8, (2006), 2612-2618. https://doi.org/10.1111/j.1551-2916.2006.01106.x
  40. Liu, W., Tong, W., Lu, X., Wu, S., "Effects of different types of rare earth oxide additives on the properties of silicon nitride ceramic substrates", Ceramics International, Vol. 45, No. 9, (2019), 12436-12442. https://doi.org/10.1016/j.ceramint.2019.03.176
  41. Wang, Z. H., Bai, B., Ning, X. S., "Effect of rare earth additives on properties of silicon nitride ceramics", Advances in Applied Ceramics, Vol. 113, No. 3, (2014), 173-177. https://doi.org/10.1179/1743676113Y.0000000138
  42. Jeong, K., Tatami, J., Iijima, M., Nishimura, T., "Spark plasma sintering of silicon nitride using nanocomposite particles", Advanced Powder Technology, Vol. 28, No. 1, (2017), 37-42. https://doi.org/10.1016/j.apt.2016.06.027
  43. Peng, G. H., Li, X. G., Liang, M., Liang, Z. H., Liu, Q., Li, W. L., "Spark plasma sintered high hardness α/β Si3N4 composites with MgSiN2 as additives", Scripta Materialia, Vol. 61, No. 4, (2009), 347-350. https://doi.org/10.1016/j.scriptamat.2009.04.007
  44. Ceja-Cárdenas, L., Lemus-Ruíz, J., Jaramillo-Vigueras, D., De La Torre, S. D., "Spark plasma sintering of α-Si3N4 ceramics with Al2O3 and Y2O3 as additives and its morphology transformation", Journal of Alloys and Compounds, Vol. 501, No. 2, (2010), 345-351. https://doi.org/10.1016/j.jallcom.2010.04.102
  45. Kawashima, T., Okamoto, H., Yamamoto, H., Kitamura, A., "Grain size dependence of the fracture toughness of silicon nitride ceramics", Journal of the Ceramic Society of Japan, Vol. 99, No. 1148, (1991), 320-323. https://doi.org/10.2109/jcersj.99.320
  46. Luo, S. C., Guo, W. M., Plucknett, K., Lin, H. T., "Improved toughness of spark-plasma-sintered Si3N4 ceramics by adding HfB2", Ceramics International, Vol. 47, No. 6, (2021), 8717-8721. https://doi.org/10.1016/j.ceramint.2020.11.201
  47. Šajgalik, P., Dusza, J., Hoffmann, M. J., "Relationship between microstructure, toughening mechanisms, and fracture toughness of reinforced silicon nitride ceramics", Journal of the American Ceramic Society, Vol. 78, No. 10, (1995), 2619-2624. https://doi.org/10.1111/j.1151-2916.1995.tb08031.x