Document Type : Research Note Article

Authors

1 M. Sc. Strudent, Department of Microbiology, Faculty of Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran

2 Assistant Professor, Department of Biology, Faculty of Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran

3 Assistant Professor, Department of Microbiology, Faculty of Sciences, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran

Abstract

The main objective of the current study was to investigate the effects of titanium dioxide nanoparticles on some Multi-Drug Resistant (MDR) bacteria and consequently, on the liver of male Wistar rats. In this experimental study, nanoparticles in the form of spheres of 20 nm in diameter were synthesized through co-precipitation method, and their antibacterial effect on several bacterial strains was evaluated based on agar well diffusion and macrodilution methods. In addition, the activities of liver enzymes, i.e., ALT, ALP, and AST, and liver tissues in the mice were examined. The obtained data were compared using one-way ANOVA. The results confirmed the ability of these nanoparticles with the concentration of 640 (mg/L) to inhibit the growth of clinical and standard strains of Pseudomonas aeruginosa, Enterococcus faecium, and Staphylococcus aureus. In the case of the activities of liver enzymes AST and ALP, the mentioned concentration of nanoparticles caused a significant decrease in the structure of liver tissue with some disorders. The findings of this study revelaed that these nanoparticles halted the growth of some pathogenic bacteria. However, after intraperitoneal injection into the mice body, the mentioned nanoparticles reduced the activity of liver enzymes and tissue abnormalities.

Keywords

Main Subjects

  1. Stoll, K. R., Scholle, F., Zhu, J., Zhang, X., Ghiladi, R. A.,"BODIPY-embedded electrospun materials in antimicrobial photodynamic inactivation", Photochemical & Photobiological Sciences, Vol. 18, No. 8, (2019), 1923-1932. https://doi.org/10.1039/c9PP00103d
  2. Pandey, N. K., Tiwari, K., Roy, A., "ZnO–TiO2 nanocomposite: Characterization and moisture sensing studies", Bulletin of Materials Science, Vol. 35, No. 3, (2012), 347-352. https://doi.org/10.1007/s12034-012-0290-x
  3. Narayanamma, A., Rani, A., Raju, M. E., "Natural synthesis of silver nanoparticles by banana peel extract and as an antibacterial agent", Journal of Polymer and Textile Engineering, Vol. 3, (2016), 17-25. https://pdfs.semanticscholar.org/37f0/322904dfb6115963e9b404759363ca05c2e4.pdf
  4. Ahmed, T., Shahid, M., Noman, M., Niazi, M. B. K., Mahmood, F., Manzoor, I., Zhang, Y., Li, B., Yang, Y., Yan, C., Chen, J., "Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice", Pathogens, Vol. 9, No. 3, (2020), 160. https://doi.org/10.3390/pathogens9030160
  5. Alzahrani, K. E., Niazy, A. A., Alswieleh, A. M., Wahab, R., El-Toni, A. M., Alghamdi. H. S., "Antibacterial activity of trimetal (CuZnFe) oxide nanoparticles", International Journal of Nanomedicine, Vol. 13, (2018), 77-87. https://doi.org/2147/IJN.S154218
  6. Jeon, H., Min, Y. J., Ahn, S. H., Hong, S. M., Shin, J. S., Kim, J. H., Lee, K. B., "Graft copolymer templated synthesis of mesoporous MgO/TiO2 mixed oxide nanoparticles and their CO2 adsorption capacities", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 414, (2012), 75-81. https://doi.org/10.1016/j.colsurfa.2012.08.009
  7. Yu, B., Leung, K. M., Guo, Q., Lau, W. M., Yang, J., "Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application", Nanotechnology, Vol. 22, No. 11, (2011), 115603. https://iopscience.iop.org/article/10.1088/0957-4484/22/11/115603/meta
  8. Roy, A. S., Parveen, A., Koppalkar, A. R., Prasad, M. A., "Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus", Journal of Biomaterials and Nanobiotechnology, Vol. 1, No. 1, (2010), 37. https://doi.org/10.4236/jbnb.2010.11005
  9. Díez-Aguilar, M., Morosini, M. I., del Campo, R., García-Castillo, M., Zamora, J., Cantón, R., "In vitro activity of fosfomycin against a collection of clinical Pseudomonas aeruginosa isolates from 16 Spanish hospitals: Establishing the validity of standard broth microdilution as susceptibility testing method", Antimicrobial Agents and Chemotherapy, Vol. 57, No. 11, (2013), 5701-5703. https://doi.org/10.1128/AAC.00589-13
  10. Pandey, N. K., Tiwari, K., Roy, A., "ZnO–TiO2 nanocomposite: Characterization and moisture sensing studies", Bulletin of Materials Science, Vol. 35, No. 3, (2012), 347-352. https://doi.org/10.1007/s12034-012-0290-x
  11. Alhadrami, H. A., Al-Hazmi, F., "Antibacterial activities of titanium oxide nanoparticles", Journal of Bioelectronics and Nanotechnology, Vol. 2, No. 1, (2017). https://pdfs.semanticscholar.org/2225/691484ea44ab9b731a1177d67f8d12e586c8.pdf
  12. Feng, S., Zhang, F., Ahmed, S., Liu, Y., "Physico-mechanical and antibacterial properties of PLA/TiO2 composite materials synthesized via electrospinning and solution casting processes", Coatings, Vol. 9, No. 8, (2019), 525. https://doi.org/10.3390/coatings9080525
  13. Ochiai, T., Fujishima, A., "Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 13, No. 4, (2012), 247-262. https://doi.org/10.1016/j.jphotochemrev.2012.07.001
  14. Saptarshi, S. R., Duschl, A., Lopata, A. L., "Interaction of nanoparticles with proteins: Relation to bio-reactivity of the nanoparticle", Journal of Nanobiotechnology, Vol. 11, No. 1, (2013), 1-12. https://doi.org/10.1186/1477-3155-11-26
  15. Brun, E., Barreau, F., Veronesi, G., Fayard, B., Sorieul, S., Chanéac, C., Carapito, C., Rabilloud, T., Mabondzo, A., Herlin-Boime, N., Carrière, M., "Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia", Particle and Fibre Toxicology, Vol. 11, No. 1, (2014), 1-16. https://doi.org/10.1186/1743-8977-11-13
  16. Zharov, V. P., Mercer, K. E., Galitovskaya, E. N., Smeltzer, M. S., "Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles", Biophysical Journal, Vol. 90, No. 2, (2006), 619-627. https://doi.org/10.1529/biophysj.105.061895
  17. Sheydaei, P., Bayrami, A., Azizian, Y., Parvinroo, S., "Study on the toxicity effects of zinc oxide nanoparticles on hematological and serum parameters in mice", Journal of Arak University of Medical Sciences, Vol. 19, No. 10, (2017), 39-47. http://jams.arakmu.ac.ir/article-1-4598-en.html
  18. Sun, B., Wang, X., Ji, Z., Wang, M., Liao, Y. P., Chang, C. H., Li, R., Zhang, H., Nel, A. E., Xia, T., "NADPH oxidase‐dependent NLRP3 inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes", Small, Vol. 11, No. 17, (2015), 2087-2097. https://doi.org/10.1002/smll.201402859
  19. Fakhari, S., Jamzad, M., Kabiri Fard, H., "Green synthesis of zinc oxide nanoparticles: A comparison", Green Chemistry Letters and Reviews, Vol. 12, No. 1, (2019), 19-24. https://doi.org/10.1080/17518253.2018.1547925
  20. Caratto, V., Ball, L., Sanguineti, E., Insorsi, A., Firpo, I., Alberti, S., Ferretti, M., Pelosi, P., "Antibacterial activity of standard and N-doped titanium dioxide-coated endotracheal tubes: an in vitro study", Revista Brasileira de Terapia Intensive, Vol. 29, (2017), 55-62. https://doi.org/5935/0103-507X.20170009
  21. Nourbakhsh, F., Momtaz, H., "Detection of antibiotic resistance patterns in Staphylococcus aureus strains isolated from patients admitted to Isfahan hospitals during 2014-2015", KAUMS Journal (FEYZ), Vol. 19, No. 4, (2015), 356-363. http://feyz.kaums.ac.ir/article-1-2788-en.html
  22. Rahimi, F., Bouzari, M., Katouli, M., Pourshafie, M. R., "Antibiotic resistance pattern of methicillin resistant and methicillin sensitive Staphylococcus aureus isolates in Tehran, Iran", Jundishapur Journal of Microbiology, Vol. 6, No. 2, (2013), 144-149. https://doi.org/10.5812/jjm.4896
  23. Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., Frej-Madrzak, M., Ksiazczyk, M., Bugla-Ploskonska, G., Choroszy-Krol, I., "Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports", Gut Pathogens, Vol. 11, No. 1, (2019), 1-16. https://doi.org/10.1186/s13099-019-0290-0
  24. Simjee, S., White, D. G., McDermott, P. F., Wagner, D. D., Zervos, M. J., Donabedian, S. M., English, L. L., Hayes, J. R., Walker, R. D., "Characterization of Tn1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections: Evidence of gene exchange between human and animal enterococci", Journal of Clinical Microbiology, Vol. 40, No. 12, (2002), 4659-4665. https://doi.org/10.1128/JCM.40.12.4659-4665.2002
  25. Arbabi, L., Boustanshenas, M., Adabi, M., Fathizadeh, S., Rasouli Koohi, S., Afshar, M., Rahbar, M., Majidpour, A., Talebi, M., Talebi Taher, M., "Isolation and antibiotic susceptibility pattern among vancomycin resistant Enterococci isolated from clinical samples of different parts of Rasoul-E-Akram hospital", Journal of Ardabil University of Medical Sciences, Vol. 15, No. 4, (2016), 404-413. https://www.sid.ir/en/journal/ViewPaper.aspx?id=485025
  26. Mohammadi, F., Tabaraie, B., Davudian, E., Maleki, A., Maleknia, S., Nejati, M., Tabaraie, T., "Evaluation of drug resistance frequency among Entrococcus faecium and Entrococcus faecalis strains and detection of vanA/B genes in vancomycin resistance isolated by PCR method in Ilam and Kermanshah hospitals", Iranian Journal of Medical Microbiology, Vol. 5, No. 1, (2011), 14-18. http://ijmm.ir/article-1-172-en.html
  27. Schreiber IV, H. L., Conover, M. S., Chou, W. C., Hibbing, M. E., Manson, A. L., Dodson, K. W., Hannan, T. J., Roberts, P. L., Stapleton, A. E., Hooton, T. M., Livny, J., "Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections", Science Translational Medicine, Vol. 9, No. 382, (2017). eaaf1283. https://doi.org/10.1126/scitranslmed.aaf1283
  28. Wang, J., Zhou, G., Chen, C., Yu, H., Wang, T., Ma, Y., Jia, G., Gao, Y., Li, B., Sun, J., Li, Y., Jiao, F., Zhao, Y., Chai, Z., "Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration", Toxicology Letters, Vol. 168, (2007), 176-185. https://doi.org/10.1016/j.toxlet.2006.12.001
  29. Xiao, G., Yang, J., Yan, L., "Comparison of diagnostic accuracy of aspartate aminotransferase to platelet ratio index and fibrosis‐4 index for detecting liver fibrosis in adult patients with chronic hepatitis B virus infection: A systemic review and meta‐analysis", Hepatology, Vol. 61, No. 1, (2014), 292-302. https://doi.org/10.1002/hep.27382
  30. Seyedalipour, S. B., Fattahi, R., Khanbabaee, R., Abdullahpour, R., "The effect of MgO nanoparticles on histopathological and biomarker changes of liver injuries (ALT, ALP, and AST) in pregnant NMRI mice", Journal of Advances in Medical and Biomedical Research, Vol. 24, No. 102, (2016), 44-56. http://zums.ac.ir/journal/article-1-3412-en.html
  31. Yoosefi, M., Shariat, S., Golabi, M. R., Bahrami, A., Dareshouri, H., Ansaripour, M., Modaresi M., "The effects of titanium dioxide nanoparticles on liver histology in mice", Journal of Chemical and Pharmaceutical Research, 8, No. 4, (2016). 1313-1316. https://www.researchgate.net/publication/336086963_The_effects_of_titanium_dioxide_nanoparticles_on_liver_histology_in_mice
  32. Arbabi, S., Bayrami, A., Sheidaii, P., "An investigation of the toxicity of zinc oxide and titanium oxide nanoparticles on some liver enzymes in male mice" Journal of Rafsanjan University of Medical Sciences, Vol. 16, No. 7, (2017), 633-644. http://journal.rums.ac.ir/article-1-3690-en.html