Document Type : Original Reaearch Article

Authors

1 Ph. D. Student, Institute for Nanoscience & Nanotechnology (INST), Sharif University of Technology, Tehran, Tehran, Iran

2 Postdoctoral Researcher, Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modarres University, Tehran, Tehran, Iran

3 Postdoctoral Researcher, Department of Physics, Sharif University of Technology, Tehran, Tehran, Iran

4 Assistant Professor, Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

5 Professor, Department of Physics, Sharif University of Technology, Tehran, Tehran, Iran

Abstract

In this research, solution based CuInS2 (CIS) thin film solar cell with glass/FTO/TiO2/In2S3/CIS/Carbon structure fabricated from CIS nanoparticle ink. The CIS absorber layer, which is the most important part of the cell, is deposited by drop casting CIS nanoparticle ink dispersed in DMF followed by heat treatment to 250 °C. X-Ray diffraction (XRD) of the absorber layer shows respectable crystallinity with pure chalcopyrite phase. UV-Vis spectrum of the CIS nanoparticle ink confirms high optical absorption in visible wavelengths. Micrographs of the CIS layer show obvious voids and discontinuity in the layer. The discontinuity in the absorber layer has direct impact on the cell performance. In the absence of a packed absorber layer, the charge carriers’ transfer reduces significantly. The absorber layer’s morphology has been improved by controlling the vapor pressure during heat treatment. As a result, the absorber layer changes to a more packed structure with fewer voids. Optimization of the absorber layer deposition leads to and efficiency is enhancement of 136 % from 2.2 % to 5.2 %.

Keywords

Main Subjects

  1. Poortmans, J., Arkhipov, V., Thin film solar cells : Fabrication, characterization and applications, England, John Wiley & Sons Ltd., (2006). https://doi.org/10.1002/0470091282
    1. Green, M. A., Hishikawa, Y., Dunlop, E. D., Levi, D. H., Hohl-Ebinger, J., Ho-Baillie, A. W. Y., "Solar cell efficiency tables (Version 52)", Progress in Photovoltaics: Research & Applications, Vol. 26, No. 7, (2018), 427-436. https://doi.org/10.1002/pip.3040
    2. Green, M. A., "Consolidation of thin-film photovoltaic technology: The coming decade of opportunity", Progress in Photovoltaics: Research & Applications, Vol. 14, No. 5, (2005), 383-392. https://doi.org/10.1002/pip.702
    3. Andersson, B. A., Azar, C., Holmberg, J., Karlsson, S.,"Material constraints for thin-film solar cells", Energy, Vol. 23, No. 5, (1998), 407-411. https://doi.org/10.1016/S0360-5442(97)00102-3
  2. Shafarman, W. N., Stolt, L., "Cu(InGa)Se2 solar cells", In Luque, A., Hegedus, S. (ed.), Handbook of photovoltaic science and engineering, England, John Wiley & Sons Ltd., (2003), 576-616.https://doi.org/10.1002/0470014008.ch13
    1. Yakushev, M. V., Mudryi, A. V., Victorov, I. V., Krustok, J., Mellikov, E., "Energy of excitons in CuInS2 single crystals", Applied Physics Letter, Vol. 88, No. 1, (2006), 011922. https://doi.org/10.1063/1.2152114
    2. Jackson, P., Hariskos, D., Lotter, E., Paetel, S., Wuerz, R., Menner, R., Wischmann, W., Powalla, M., "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20 %", Progressin Photovoltaics: Research & Applications, Vol. 19, No. 7, (2011), 894-897. https://doi.org/10.1002/pip.1078
    3. Hibberd, C. J., Chassaing, E., Liu, W., Mitzi, D. B., Lincot, D., Tiwari, A. N., "Non-vacuum methods for formation of Cu(In,Ga)(Se, S)2 thin film photovoltaic absorbers", Progress in Photovoltaics: Research & Applications, Vol. 18, No. 6, (2010), 434-452. https://doi.org/10.1002/pip.914
    4. Talapin, D. V., Lee, J. S., Kovalenko, M., Shevchenko, E. V., "Prospects of colloidal nanocrystals for electronic and optoelectronic applications", Chemical Reviews, Vol. 110, No. 1, (2010) 389-458. https://doi.org/10.1021/cr900137k
    5. Kim, B., Min, B. K.,"Strategies toward highly efficient CIGSe thin-film solar cells fabricated by sequential process", Sustainable Energy & Fuels, Vol. 2, No. 8, (2018) 1671-1685. https://doi.org/10.1039/C8SE00158H
    6. Cho, J. W., Park, S. J., Kim, W., Min, B. K.,"Fabrication of nanocrystal ink based superstrate-type CuInS2 thin film solar cells", Nanotechnology, V      ol. 23, No. 26, (2012), 265401. https://doi.org/10.1088/0957-4484/23/26/265401
    7. Romeo, A., Terheggen, M., Abou-Ras, D., Bätzner, D. L., Haug, F. -J., Kälin, M., Rudmann, D., Tiwari, A. N., "Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells ", Progress in Photovoltaics: Research & Applications, Vol. 12, No. 2-3, (2004), 93-111. https://doi.org/10.1002/pip.527
    8. Heinemann, M. D., Ruske, F., Greiner, D., Jeong, A. R., Rusu, M., Rech, B., Schlatmann, R., Kaufmann, C. A., "Advantageous light management in Cu(In,Ga)Se2 superstrate solar cells", Solar Energy Materials and Solar Cells, Vol. 150, (2016), 76-81. https://doi.org/10.1016/j.solmat.2016.02.005
    9. Minemoto, T., Harada, S., Takakura, H., "Cu(In,Ga)Se2 superstrate-type solar cells with Zn1-xMgxO buffer layers", Current Applied Physics, Vol. 12, No. 1, (2012), 171-173. https://doi.org/10.1016/j.cap.2011.05.030
  3. Cheshme Khavar, A. H.,Mahjoub, A. R., Tajabadi, F., Dehghani, M., Taghavinia, N., "Preparation of a CuInS2 nanoparticle ink and application in a selenization-free, solution-processed superstrate solar cell", European Journal of Inorganic Chemistry, Vol. 35, No. 35, (2018), 5793-5800. https://doi.org/10.1002/ejic.201500749
  4. Kim, H., Tofail, M. T., John, C., "The effect of interface cracks on the electrical performance of solar cells", The Journal of The Minerals, Metals & Materials Society, Vol. 70, No. 4, (2018), 473-478. https://doi.org/10.1007/s11837-018-2739-x