Document Type : Original Reaearch Article

Authors

1 Ph. D. Candidate, Department of Physics, Isfahan University of Technology, Isfahan, Isfahan, Iran

2 Associate Professor, Department of Physics, Isfahan University of Technology, Isfahan, Isfahan, Iran

3 Professor, Department of Materials Engineering, Isfahan University of Technology, Isfahan, Isfahan, Iran

4 Professor, Department of Physics, Sharif University of Technology, Tehran, Tehran, Iran

5 Ph. D. Student, Department of Physics, Sharif University of Technology, Tehran, Tehran, Iran

Abstract

In perovskite solar cells (PSCs), effective electron extraction and reduction of electron-hole pair recombination at the electron transport layer (ETL)/perovskite interface is essential for obtaining higher performance. In this research, the presence effect of a metal oxide ultra-thin layer (< 10 nm thick) on the major ETL (≈ 50 nm thick) in improving the photovoltaic performance of the cell was investigated. For this purpose, a complete set of bilayer structures for the three common ETL metal oxide materials TiO2, SnO2 and WO3, were provided using the accurate and reproducible radio-frequency (RF) sputtering deposition method, and their performance as ETL in the cell was compared. Structural and electrical characterizations of different cells and ETLs were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV-vis spectroscopy, Mott-Schottky analysis and J-V diagrams. The use of TiO2/SnO2-UTL, TiO2/WO3-UTL and SnO2/WO3-UTL bilayer structures has been shown to significantly increase cell efficiency by creating more efficient energy band alignment. On the other hand, using their inverted bilayer structures, SnO2/TiO2-UTL, WO3/TiO2-UTL, and WO3/SnO2-UTL, resulted in reduced cell efficiency. The results suggest a simple and promising approach to designe more efficient photovoltaic devices with improved performance.

Keywords

Main Subjects

  1. Farzan, H., "The study of thermostat impact on energy consumption in a residential building by using TRNSYS", Journal of Renewable Energy and Environment (JREE),Vol. 6, (2019), 15-20. https://doi.org/10.30501/JREE.2019.95531
  2. Torknik, F. S., Choi, G. M., Maghsoudipour, A., Kianpour Rad, M., "Nanostructuring platinum nanoparticles on Ni/Ce0.8Gd0.2O2-δ anode for low temperature solid oxide fuel cell via single-step infiltration: A case study", Advanced Ceramics Progress,Vol. 4, (2018), 45-51. https://doi.org/10.30501/ACP.2018.90833
  3. Web., Available at: https://www.nrel.gov/pv/cell-efficiency.html
  4. Ke, W., Fang, G., Wan, J., Tao, H., Liu, Q., Xiong, L., Qin, P., Wang, J., Lei, H., Yang, G., Qin, M., Zhao, X., Yan, Y., "Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells", Nature Communications,Vol. 6, (2015), 6700-6706. https://doi.org/10.1038/ncomms7700
  5. Liu, H., Huang, Z., Wei, S., Zheng, L., Xiao, L., Gong, Q., "Nano-structured electron transporting materials for perovskite solar cells", Nanoscale,Vol. 8, (2016), 6209-6221. https://doi.org/10.1039/C5NR05207F
  6. Salehi, A., Sadrnezhaad, S., "Comparison of carbon nitride nanosheets synthesized by thermal and ultrasonic thermal (combined) methods", Journal of Advanced Materials and Technologies (JAMT),Vol. 8, No. 4, (2020), 1-7. (In Farsi). https://doi.org/10.30501/JAMT.2020.93224
  7. Yang, G., Tao, H., Qin, P., Ke, W., Fang, G., "Recent progress in electron transport layers for efficient perovskite solar cells", Journal of Materials Chemistry A,Vol. 4, (2016), 3970-3990. https://doi.org/10.1039/C5TA09011C
  8. Eslami Afrooz, I., Chuan Ching, D. L., "Effect of novel swirl distributor plate on hydrodynamics of fluidized bed gasifier", International Journal of Engineering,Vol. 32, (2019), 1358-1365. https://doi.org/10.5829/IJE.2019.32.10A.04
  9. Li, X., Bi, D., Yi, C., Décoppet, J. -D., Luo, J., Zakeeruddin, S. M., Hagfeldt, A., Grätzel, M., "A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells", Science,Vol. 353, (2016), 58-62. https://science.sciencemag.org/content/353/6294/58
  10. Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Islam, A., Grätzel, M., Han, L., "Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers", Science,Vol. 35, (2015), 944-948. https://science.sciencemag.org/content/350/6263/944
  11. Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Zhang, X., You, J., "Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC (NH2)2PbI3-based perovskite solar cells", Nature Energy,Vol. 2, (2017), 16177. https://doi.org/10.1038/nenergy.2016.177
  12. Tan, H., Jain, A., Voznyy, O., Lan, X., De Arquer, F. P. G., Fan, J. Z., Quintero-Bermudez, R., Yuan, M., Zhang, B., Zhao, Y., Fan, F., Li, P., Na Quan, L., Zhao, Y., Lu, Z. -H., Yang, Z., Hoogland, S., Sargent, E. H., "Efficient and stable solution-processed planar perovskite solar cells via contact passivation", Science,Vol. 355, (2017), 722-726. https://science.sciencemag.org/content/355/6326/722
  13. Wu, Y., Yang, X., Chen, W., Yue, Y., Cai, M., Xie, F., Bi, E., Islam, A., Han, L., "Perovskite solar cells with 18.21 % efficiency and area over 1 cm2 fabricated by heterojunction engineering", Nature Energy,Vol. 1, (2016), 16148. https://doi.org/10.1038/nenergy.2016.148
  14. Choi, J., Song, S., Hörantner, M. T., Snaith, H. J., Park, T., "Well-defined nanostructured, single-crystalline TiO2 electron transport layer for efficient planar perovskite solar cells", ACS Nano,Vol. 10, (2016), 6029-6036. https://doi.org/10.1021/acsnano.6b01575
  15. Edri, E., Kirmayer, S., Henning, A., Mukhopadhyay, S., Gartsman, K., Rosenwaks, Y., Hodes, G., Cahen, D., "Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor)", Nano Letters,Vol. 14, (2014), 1000-1004. https://doi.org/10.1021/nl404454h
  16. Mohammadian-Sarcheshmeh, H., Mazloum-Ardakani, M., "Recent advancements in compact layer development for perovskite solar cells", Heliyon,Vol. 4, (2018), 00912. https://doi.org/10.1016/j.heliyon.2018.e00912
  17. Abrusci, A., Stranks, S. D., Docampo, P., Yip, H. -L.,. Jen, A. K. -Y, Snaith, H. J., "High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers", Nano Letters,Vol. 13, (2013), 3124-3128. https://doi.org/10.1021/nl401044q
  18. Wojciechowski, K., Stranks, S. D., Abate, A., Sadoughi, G., Sadhanala, A., Kopidakis, N., Rumbles, G., Li, C. -Z., Friend, R. H., Jen, A. K. -Y., Snaith, H. J., "Heterojunction modification for highly efficient organic–inorganic perovskite solar cells", ACS Nano,Vol. 8, (2014), 12701-12709. https://doi.org/10.1021/nn505723h
  19. Yang, D., Zhou, X., Yang, R., Yang, Z., Yu, W., Wang, X., Li, C., Liu, Z. (F.), Chang, R. P. H., "Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells", Energy & Environmental Science,Vol. 9, (2016), 3071-3078. https://doi.org/10.1039/C6EE02139E
  20. Li, Y., Zhu, J., Huang, Y., Liu, F., Lv, M., Chen, S., Hu, L., Tang, J., Yao, J., Dai, S., "Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells", RSC Advances,Vol. 5, (2015), 28424-28429. https://doi.org/10.1039/C5RA01540E
  21. Osali, S., Esfahani, H., Karami, H. R., "Photoluminescence and IR properties of Al doped ZnO nanofibers." Journal of Advanced Materials and Technologies (JAMT),Vol. 8, No. 4, (2020), 9-17. (In Farsi). https://doi.org/10.30501/JAMT.2020.104190
  22. Kulkarni, A., Jena, A. K., Chen, H. -W., Sanehira, Y., Ikegami, M., Miyasaka, T., "Revealing and reducing the possible recombination loss within TiO2 compact layer by incorporating MgO layer in perovskite solar cells", Solar Energy,Vol. 136, (2016), 379-384. https://doi.org/10.1016/j.solener.2016.07.019
  23. Lu, H., Tian, W., Gu, B., Zhu, Y., Li, L., "TiO2 electron transport bilayer for highly efficient planar perovskite solar cell", Small,Vol. 13, (2017), 1701535. https://doi.org/10.1002/smll.201701535
  24. Xu, X., Zhang, H., Shi, J., Dong, J., Luo, Y., Li, D., Meng, Q., "Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer", Journal of Materials Chemistry A,Vol. 2, (2015), 19288-19293. https://doi.org/10.1039/C5TA04239A
  25. Otoufi, M. K., Ranjbar, M., Kermanpur, A., Taghavinia, N., Minbashi, M., Forouzandeh, M., Ebadi, F., “Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers”, Solar Energy, Vol. 208, (2020), 697-707. https://doi.org/10.1016/j.solener.2020.08.035
  26. Kogo, A., Ikegami, M., Miyasaka, T., "A SnOx–brookite TiO2 bilayer electron collector for hysteresis-less high efficiency plastic perovskite solar cells fabricated at low process temperature", Chemical Communications,(2016). https://doi.org/10.1039/C6CC02589G
  27. Qiu, L., Liu, Z., Ono, L. K., Jiang, Y., Son, D. Y., Hawash, Z., He, S., Qi, Y., "Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2 electron transport layer", Advanced Functional Materials,(2018), 1806779. https://doi.org/10.1002/adfm.201806779
  28. Huang, X., Hu, Z., Xu, J., Wang, P., Wang, L., Zhang, J., Zhu, Y., "Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells", Solar Energy Materials and Solar Cells,Vol. 164, (2017), 87-92. https://doi.org/10.1016/j.solmat.2017.02.010
  29. Lu, G., He, F., Pang, S., Yang, H., Chen, D., Chang, J., Lin, Z., Zhang, J., Zhang, C., "A PCBM-modified TiO2 blocking layer towards efficient perovskite solar cells", International Journal of Photoenergy,(2017). https://doi.org/10.1155/2017/2562968
  30. Eze, V. O., Seike, Y., Mori, T., "Efficient planar perovskite solar cells using solution-processed amorphous WOx/fullerene C60 as electron extraction layers", OrganicElectronics,Vol. 46, (2017), 253-262. https://doi.org/10.1016/j.orgel.2017.04.024
  31. Noh, M. F. M., Teh, C. H., Daik, R., Lim, E. L., Yap, C. C., Ibrahim, M. A., Ludin, M. A., Yusoff, A. R. B. M., Jang, J., Teridi, M. A. M., "The architecture of the electron transport layer for a perovskite solar cell", Journal of Materials Chemistry C,Vol. 6, (2018), 682-712. https://doi.org/10.1039/C7TC04649A
  32. Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., Zakeeruddin, S. M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M., "Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency", Energy & Environmental Science, Vol. 9, (2016), 1989-1997. https://doi.org/10.1039/C5EE03874J
  33. Swanepoel, R., "Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films", Journal of Physics E: Scientific Instruments,Vol. 17, (1984), 896. https://iopscience.iop.org/article/10.1088/0022-3735/17/10/023/meta
  34. Wang, K., Shi, Y., Dong, Q., Li, Y., Wang, S., Yu, X., Wu, M., Ma, T., "Low-temperature and solution-processed amorphous WOx as electron-selective layer for perovskite solar cells", The Journal of Physical Chemistry Letters,Vol. 6, (2015), 755-759. https://doi.org/10.1021/acs.jpclett.5b00010
  35. Ganbavle, V., Agawane, G., Moholkar, A., Kim, J., Rajpure, K., "Structural, optical, electrical, and dielectric properties of the spray-deposited WO3 thin films", Journal of Materials Engineering and Performance,Vol. 23, (2014), 1204-1213. https://doi.org/10.1007/s11665-014-0873-3
  36. Lim, S., Huang, N. M., Lim, H. N., Mazhar, M., "Surface modification of aerosol-assisted CVD produced TiO2 thin film for dye sensitised solar cell", International Journal of Photoenergy,(2014). https://www.hindawi.com/journals/ijp/2014/586707
  37. Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M., Cab, C., de Coss, R. d., Oskam, G., "Phase-pure TiO2 nanoparticles: anatase, brookite and rutile", Nanotechnology,Vol. 19, (2008), 145605. http://iopscience.iop.org/article/10.1088/0957-4484/19/14/145605/meta
  38. Li J., Wu, N., "Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review", Catalysis Science & Technology,Vol. 5, (2015), 1360-1384. https://doi.org/10.1039/C4CY00974F
  39. Berberich, L., Bell, M., "The dielectric properties of the rutile form of TiO2", Journal of Applied Physics,Vol. 11, (1940), 681-692. https://doi.org/10.1063/1.1712721
  40. Kormann, C., Bahnemann, D. W., Hoffmann, M. R., "Preparation and characterization of quantum-size titanium dioxide", The Journal of Physical Chemistry,Vol. 92, (1988), 5196-5201. https://doi.org/10.1021/j100329a027
  41. Yıldırım, M. A., Yıldırım, S. T., Sakar, E. F., Ateş, A., "Synthesis, characterization and dielectric properties of SnO2 thin films", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,Vol. 133, (2014), 60-65. https://doi.org/10.1016/j.saa.2014.05.035
  42. Button, K. J., Fonstad, C. G., Dreybrodt, W., "Determination of the electron masses in stannic oxide by submillimeter cyclotron resonance", Physical Review B,Vol. 4, (1971), 4539. https://doi.org/10.1103/PhysRevB.4.4539
  43. Paliwal, A., Sharma, A., Tomar, M., Gupta, V., "Optical properties of WO3 thin films using surface plasmon resonance technique", Journal of Applied Physics,Vol. 115, (2014), 043104. https://doi.org/10.1063/1.4862962
  44. Berak J. M., Sienko, M., "Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals", Journal of Solid State Chemistry,Vol. 2, (1970), 109-133. https://doi.org/10.1016/0022-4596(70)90040-X
  45. Roh, S. -J., Mane, R. S., Min, S. -K., Lee, W. -J., Lokhande, C., Han, S. -H., "Achievement of 4.51 % conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells", Applied Physics Letters,Vol. 89, (2006), 253512. https://doi.org/10.1063/1.2410240
  46. Minemoto T., Murata, M., "Theoretical analysis on effect of band offsets in perovskite solar cells", Solar Energy Materials and Solar Cells,Vol. 133, (2015), 8-14. https://doi.org/10.1016/j.solmat.2014.10.036