Document Type : Original Reaearch Article

Authors

1 Department of Science and Modern Technology, Faculty of Materials Engineering, Graduate University of Advanced Technology, Kerman, Iran

2 Department of Engineering, Faculty of Materials Engineering, Meybod University, Meybod, Iran

3 Department of Engineering, University of Shahrekord, Shahrekord, Iran

Abstract

In this study, the effect of strainin thermomechanical two-step aging heat treatment on mechanical properties and electrochemical corrosion resistance of Al-2024 alloy has been investigated. These results were compared with normal aging T6. For this research, samples of Al-2024 alloys were placed at ambient temperature during normal aging under different percentages of strain, and then aging treatment was completed. Four strains of 10%, 30%, 50% and 65% were applied on the samples by rolling machine. The results of tensile test with low strain rate, potentiodynamic polarization curves and optical microscopy indicated that the sample with 50% strain offered optimum combination of microstructure, mechanical strength and corrosion resistance. This is due to the fine and uniform distribution of precipitates that cause increasing of yield strength, tensile strength and corrosion resistance by 27%, 10%, and 83%, respectively, in comparison with T6 heat treated[MP2D1] . Therefore applying strain of 50%, can increase the corrosion resistance with maintaining high strength in two-step aging and thermomechanical heat treatments.


 

Keywords

  1.       Hui, M.W., Chang, Q. X., Pan, L., Zhi, W.W., Influence of thermomechanical aging on microstructure and mechanical properties of 2519A aluminum alloy, Cent. South Univ. Technol., 2011, 18, 1349−1353.
  2.       Kelly, A., Nicholson, R.B., Precipitation   hardening  progress  in  material  science,  London, Pergamon Press, 1963.
  3.       Li-hui, A., Yang, C., Wei, L., Shi-jian, Y., Shi-qiang Z., Fan-cheng, M., Effect of pre-deformation on microstructure and mechanical properties of 2219 aluminum alloy sheet by thermom­echanical treatment, Trans. Nonferrous Met. Soc. China, 2012, 22, 370−375.
  4.       Shabestari, S.G., Ghoncheh, M.H., Momeni, H., Evaluation of formation of intermetallic compounds in Al2024 alloy thermal analysis technique, Thermochimica Acta, 2014, 589, 174-182.
  5.  ابوطالبی، م.، میردامادی، ش.، دانشجو، ک.، صادقی، ک.، اثر پیرسازی مکانیکی (Thermomechanical Ageing) بر خواص کششی آلیاژ آلومینیوم 2024، پنجمین کنگره سالانه انجمن مهندسین متالورژی ایران، 1380، 130-121.
  6.      Silva, J.W.J., Bustamante, A.G., Codaro, E.N.,  Nakazato, R.Z., Hein, L.R.O., Morphological analysis of pits formed on Al 2024-T3 in chloride aqueous solution, Applied Surface Science, 2004, 236, 356–365.
  7.      Foroulis, Z.A., Thbrikar, M.J., On the kinetics   of   breakdown   of   passivity   of preanodized aluminum by chloride ions, J. of Electrochem. Soc., 1975, 122, 81-89.
  8.       Martin, F.J., Impedance studies of the passive film   on aluminum, Corrosion Science, 2005, 47, 3187-3201.
  9.        Smailowska, Z.S., Pitting  corrosion  of aluminum. Corrosion  Science, 1999, 41,  743-1767,.
  10.     Jianjun, R., Yu, Z., The   growth mechanism of pits in NaCl solution under anodic  films  on  aluminum,  Surface  and Coating Tech., 2005, 191, 311-316.
  11.     ASM Group, ASM Metals HandBook. Corrosion: Fundamentals, Testing, and Protection, America Society Of  Metals, 2003, 13A.
  12.  جعفرزاده، ک.، شهرابی، ت.،  هادوی، م.م.،  حسینی، م.ق.، ارزیابی خوردگی آلیاژ آلومینیوم – منیزیم AA5083-H321 در محیط NaCl ساکن به روش امپدانس الکتروشیمیایی ، علوم و مهندسی سطح4، 1386، 55-67.
  13.  
  14.     ASM Group, ASM Metals HandBook. Alloys phase diagrams, America society of metals, 1992, 3.
  15.     Kumar, M., Singh, S., Goel, D.B., Electron Microscopic Studies of Thermo mechanically Aged 2218 Alloy, Bulletin of Materials Science, India, 1988, 10, 217-222.
  16.     Wang, D., Ni, D.R., Ma, Z.Y., Effect of Pre-strain and Two-step Aging on Microstructure and Stress Corrosion Cracking of  7050 Alloy, Materials    Science and Engineering A, 2008, 494, 360-366.
  17.     Afseth, A., Nordlien, J.H., Scamans, G.M., Nisancioglu, K., Effect of thermo-mechanical processing on filiform corrosion of aluminum alloy AA3005, Corrosion Science, 2002, 44, 2491–2506.
  18.     ASM Group, ASM Metals HandBook. Heat Treating,­ The Materials Information Company, 1991, 4.
  19.     Totten, G.E., MacKenzie, D.S., Aluminum Standard and Data, New York : MARCEL  DEKKER, 2003.
  20.     Shao, M., Fu, Y., Ronggang, H., Lin, C., A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microrefrence electrode technique, Material sciense engineering, 2003,  344, 323-327.
  21.     Son, I.-J., Nakano, H., Oue, S., Shigeo, S.,  Fukushima, H., Horita, Z., Effect of equal-channel angular pressing on pitting corrosion resistance of anodized aluminum-copper alloy, Transcation of nonferrous metals society in china, 2009, 19, 904-907.