ساخت و مشخصه یابی نانو رنگدانه های Zn1-xCoxO و مشخصه یابی رنگی آنها

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده علوم، گروه فیزیک، دانشگاه پیام نور، تهران

2 مجتمع آموزش عالی فنی و مهندسی اسفراین- آزمایشگاه نانوتکنولوژی

3 دانشکده علوم، گروه فیزیک، دانشگاه پیام نور، نیشابور

چکیده

انو­رنگدانه ­های اکسید روی خالص و آلاییده شده با کبالت به روش شیمیای سل - ژل تهیه شد. سپس برای بررسی خواص ساختاری از نانوپودرها آنالیز پراش پرتوی ایکس (XRD) و آنالیز میکروسکوپ الکترونی عبوری (TEM)  و برای بررسی خواص نوری نانوپودرها آنالیز طیف سنجی مرئی –فرابنفش (UV-vis) مورد بررسی قرار رفت. اندازه نانو­بلورک­ها با استفاده از روش اندازه کرنش (SSP) و آنالیز داده­های XRD مورد مطالعه قرار گرفت و نشان داد با افزودن ناخالصی به دلیل افزایش فعالیت شیمیایی، بلورک­ها رشد یافته و اندازه بلورک­ها افزایش یافته است. مشخصه­های ریزساختاری نانوپودرهای به­دست آمده از میکروسکوپ الکترونی عبوری نشان داد که با افزودن ناخالصی، اندازه ذرات افزایش یافته است. مشخصه­های نوری شامل جذب و بازتاب برای نانوپودرها اندازه­گیری شدند که نشان می­دهد با افزودن ناخالصی میزان جذب کاهش و بازتاب افزایش می­یابد و هم­چنین از رابطه تاوک انرژی گاف نوری محاسبه گردید که کاهش گاف نوری با افزودن ناخالصی نشان­دهنده رشد بلورک­ها است. آزمون مشخصه­یابی رنگی بر روی نمونه­ها نشان می­دهد که با افزودن کبالت به شبکه ZnO میزان سبزی نمونه­ها افزایش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and Characterization of Zn1-xCoxO Nanopigments Their Colorometric Investigations

نویسندگان [English]

  • Amin Nakhaei Madih 1
  • Ali Khorsand Zak 2
  • Rahele Pilevar Shahry 3
  • Ramin mastan 1
1 Department of Physics, Payame Noor University, Tehran
2 Esfarayen University of Technology- Nanotechnology laboratory
3 Department of Physics, Payam-e-Nor University, Neyshabour
چکیده [English]

Pure and cobalt doped zinc oxide nanopigments were synthesized by chemical sol-gel method. The structural properties of the prepared nanopigments were investigated be x-ray diffraction (XRD) and transition electron microscopy (TEM) and the optical properties by UV-vis spectroscopy. Both TEM micrographs and size strain plot (SSP) analysis of the XRD results showed that the crystalline size of the samples increased by the dopant increases. It was also indicated that the optical band gap of the prepared nanopigments were increased by the cobalt content increases that is related to the crystalline size increases in presence of cobalt. The colorimetric investigations showed that the color of the prepared white zinc oxide nanopigments were changed to green by adding cobalt to the matrix. As expected, the intensity of the green color was increased as the Co content increases.  

کلیدواژه‌ها [English]

  • Zinc oxide
  • pigment
  • Nanoparticles
  • Nanopigments

1.      Kattel, S., Liu, P., Chen, J.G.  Tuning selectivity of co2 hydrogenation reactions at the metal/oxide interface. Journal of the American Chemical Society 2017, 139, 9739-9754.

2.      Rizwan, M., Ali, S., Qayyum, M.F., Ok, Y.S., Adrees, M., Ibrahim, M., Zia-ur-Rehman, M., Farid, M., Abbas, F.  Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of hazardous materials 2017, 322, 2-16.

3.      Kaupp, G., Schmidt, U., Schumacher, D., Steinbach, K. Effect pigments comprising a glass flake substrate. Google Patents: 2017.

4.      Mariani, F.Q., Borth, K.W., Müller, M., Dalpasquale, M., Anaissi, F.J.  Sustainable innovative method to synthesize different shades of iron oxide pigments. Dyes and Pigments 2017, 137, 403-409.

5.      Artesani, A., Gherardi, F., Nevin, A., Valentini, G., Comelli, D.  A photoluminescence study of the changes induced in the zinc white pigment by formation of zinc complexes. Materials 2017, 10, 340.

6.      Kumar, R., Umar, A., Kumar, G., Nalwa, H.S.  Antimicrobial properties of zno nanomaterials: A review. Ceramics International 2017, 43, 3940-3961.

7.      Podporska-Carroll, J., Myles, A., Quilty, B., McCormack, D.E., Fagan, R., Hinder, S.J., Dionysiou, D.D., Pillai, S.C.  Antibacterial properties of f-doped zno visible light photocatalyst. Journal of hazardous materials 2017, 324, 39-47.

8.      Arabnezhad, M., Afarani, M.S., Jafari, A.  Co-precipitation synthesis of zno–tio 2 nanostructure composites for arsenic photodegradation from industrial wastewater. International Journal of Environmental Science and Technology 2017, 1-6.

9.      Barhoum, A., Van Assche, G., Rahier, H., Fleisch, M., Bals, S., Delplancked, M.-P., Leroux, F., Bahnemann, D.  Sol-gel hot injection synthesis of zno nanoparticles into a porous silica matrix and reaction mechanism. Materials & design 2017, 119, 270-276.

10.    Shao, D., Gao, Y., Cao, K., Wei, Q.  Rapid surface functionalization of cotton fabrics by modified hydrothermal synthesis of zno. The Journal of The Textile Institute 2017, 108, 1391-1397.

11.    Hansen, L.D., Transtrum, M.K., Quinn, C.F. Introduction to calorimetry. In Titration calorimetry: From concept to application, Hansen, L.D.; Transtrum, M.K.; Quinn, C.F., Eds. Springer International Publishing: Cham, 2018; pp 1-4.

12.    Zielenkiewicz, W., Margas, E. Theory of calorimetry. Springer, Dordrecht: 2002; Vol. 2.

13.    Wyszecki, G., Stiles, W.S. Color science. Wiley New York: 1982; Vol. 8.

14.    Malacara, D. In Color vision and colorimetry: Theory and applications, 2011; SPIE Bellingham, WA.

15.    Khorsand Zak, A., Abd. Majid, W.H., Abrishami, M.E., Yousefi, R.  X-ray analysis of zno nanoparticles by williamson–hall and size–strain plot methods. Solid State Sciences 2011, 13, 251-256.