اثر افزودن آلیاژهای سریم- نیکل بر دمای واجذب هیدروژن کامپوزیت پایه هیدرید منیزیم تولیدی به روش آلیاژسازی مکانیکی

نویسندگان

گروه مهندسی مواد، دانشگاه نوشیروانی بابل

چکیده

در این تحقیق، مواد کامپوزیتی با ترکیب هیدرید منیزیم- 10 درصد وزنی (50 سریم-50 نیکل) (کامپوزیت C5N5) و هیدرید منیزیم- 10 درصد وزنی (25 سریم-75 نیکل) (کامپوزیت C2N7) با آسیاب کاری پودر هیدرید منیزیم و آلیاژ سریم - نیکل که به روش ذوب مجدد قوسی تحت خلاء تولید شده است، تهیه گردید. اثر افزودنی بر ساختار هیدرید منیزیم شامل اندازه دانه، کرنش شبکه، اندازه ذره و هم چنین خواص واجذب هیدروژن کامپوزیت های حاصل ارزیابی گردید و با هیدرید منیزیم خالص آسیاب کاری مقایسه شد. نشان داده شد که افزودن آلیاژهای سریم- نیکل به هیدرید منیزیم منجر به کاهش اندازه ذره از 3/1 به 6/0 میکرومتر در کامپوزیت C5N5 و به 75/0 میکرومتر در کامپوزیت C2N7 می گردد. به عنوان یک نتیجه، دمای واجذب هیدرید منیزیم فعال شده مکانیکی برای 5 ساعت، از 340 به 280 درجه سانتی گراد برای کامپوزیت C5N5 و به 268 درجه سانتی گراد برای کامپوزیت C2N7 کاهش یافته است. بهبود بیشتر در دمای واجذب کامپوزیت C2N7 می تواند مربوط به مقدار نیکل بالاتر باشد که با نتایج آنتالپی محاسبه شده مطابقت دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Ce-Ni alloy Addition on Hydrogen Desorption Temperature of Magnesium Hydride-Based Composite Produced by Mechanical Alloying

نویسندگان [English]

  • Mohammad Rajabi
  • fatemeh zahra akbarzadeh
Department of Materials Engineering, Noshirvani University of Babol
چکیده [English]

In this study, the composite materials with composition of MgH2-10 wt% (50Ce50Ni) (composite C5N5) and MgH2-10 wt% (25Ce75Ni) (composite C2N7) have been prepared by co-milling of MgH2 powder with Ce-Ni alloy produced by vacuum arc remelting. The effect of additive on MgH2 structure, i.e. crystallite size, lattice strain and particle size, and also hydrogen desorption properties of obtained composites were evaluated and compared with pure milled MgH2. It has been shown that the addition of Ce-Ni alloys to magnesium hydride leading to a reduction in the particle size from 1.3 µm to 0.6 µm for composite C5N5 and to 0.75 µm to composite C2N7. As a consequence, the desorption temperature of mechanically activated MgH2 for 5 h has decreased from 340˚C to 280˚C for composite C5N5 and to 268˚C for composite C2N7. Further improvement in the hydrogen desorption of composite C2N7 can be related to higher Ni value, which corresponded with calculated enthalpy results.

کلیدواژه‌ها [English]

  • MgH2
  • Ce-Ni alloy
  • Hydrogen desorption temperature
  • mechanical alloying
1. Chitsazkhoyi, L., Raygan, S., Pourabdoli, M., Mechanical milling of Mg, Ni and Y powder mixture and investigating the effects of produced nanostructured MgNi4Y on hydrogen desorption properties of MgH2, International Journal of Hydrogen Energy, 38 (2013) 6687-6693.
2. Wang, X.L., Tu, J.P., Wang, C.H., Zhang, X.B., Chen, C.P., Zhao, X.B., Hydrogen storage properties of nanocrystalline Mg–Ce/Ni composite, Journal of Power Sources 159 (2006) 163–166
3. Simchi, H., Kaflou, A., Simchi, A., Synergetic effect of Ni and Nb2O5 on dehydrogenation properties of nanostructured MgH2 synthesized by high-energy mechanical alloying, International Journal of Hydrogen Energy, 34 (2009) 7724–7730.
4. Ouyang , L.Z.,  Yang, X.S., Zhu, M.,  Liu, J.W., Dong, H.W., Sun, D.L., Zou, J., Yao, X.D., Enhanced Hydrogen Storage Kinetics and Stability by Synergistic Effects of in Situ Formed CeH2.73 and Ni in CeH2.73-MgH2-Ni Nanocomposites, The Journal Of Physiccal Chemistry.C,118(15) (2014) 7808–7820.
5. Motavalli, A., Rajabi, M., Catalytic effect of melt-spun Ni3FeMn alloy on hydrogen desorption properties of nanocrystalline MgH2 synthesized by mechanical alloying, International Journal of Hydrogen Energy, 39 (2014) 17047-17053.
6. Zhang, Y., Liu, Z., Li, B., Ma, Z., Guo, S., Wang, X., Structure and electrochemical performances of Mg2Ni1−xMnx (x = 0–0.4) electrode alloys prepared by melt spinning, Electrochimica Acta, 56 (2010) 427–434.
7. Agarwal, S., Aurora, A., Jain, A., Jain, I.P., Montone, A., Catalytic effect of ZrCrNi alloy on hydriding properties of MgH2, International Journal of Hydrogen Energy, 34 (2009) 9157–9162.
8. Palade, P., Sartori, S., Maddalena, A., Principi, G., LoRusso, S., Lazarescu, M., Schinteie, G., Kuncser, V., Filoti, G., Hydrogen storage in Mg–Ni–Fe compounds prepared by melt spinning and ball milling, Journal of Alloys and Compounds, 415 (2006) 170–176.
9. Bobet, J.L., Lesportes, P., G.Roquefere, J., Chevalier, B., Asano, K., Sakaki, K., et al., A preliminary study of some “pseudo-AB2” compounds: RENi4Mg with RE ¼ La, Ce and Gd. Structural and hydrogen sorption properties, International Journal Hydrogen Energy, 32 (2007) 2422-2428.
10. Liu, G., Wang, K., Lia, J., Wang, Y., Yuan, H., Enhancement of hydrogen desorption in magnesium hydride catalyzed by grapheme nanosheets supported Ni-CeOx hybrid nanocatalyst, International Journal of Hydrogen Energy, 41 (2016) 10786–10794.
11. Li, Z.P., Liu, B.H., Arai, K.H., Morigasaki, N., Suda, S., Protide compounds in hydrogen storage systems, Journal of Alloys and Compounds, 356 (2003) 469-474. 
12. Shang, C.X., Guo, Z.X., Structural and desorption characterisations of milled (MgH2 + Y, Ce) powder mixtures for hydrogen storage, International Journal of Hydrogen Energy, 32 (2007)  2920 – 2925.
13. Lin, H.J., Tang, J.J., Yu, Q., Wang, H., Ouyang, L.Z., Zhao, Y.J., Liu, J.W., Wang, W.H., Zhu, M., et al., Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump, Nano Energy ,9 (2014) 80–87.
14. Spassov, T., Lyubenova, L., Ko¨ster, U., Baro´, M.D., Mg–Ni–RE nanocrystalline alloys for hydrogen storage, Materials Science and Engineering,794 (2004) 375-377.
15. Gulicovski, J., Lovre, Z.R., Kurko, S., Vujasin, R., Jovanovic´, Z., Matovic´, L., Novakovic´, J.G., Influence of vacant CeO2 nanostructured ceramics on MgH2 hydrogen desorption properties, Ceramics International, 38 (2012) 1181–1186.
16. Ismail, M., Mustafa, N.S., Juahir, N., Halim Yap, F.A., Catalytic effect of CeCl3 on the hydrogen storage properties of MgH2, Materials Chemistry and Physics, 170 (2016) 77-82.
17. Williamson, G.K., Hall, W.H., X-ray line broadening from filed aluminum and wolfram, Acta Metall, 1 (1953) 21-31.
18. Varin, R.A., Czujko, T., Chiu, C., Wronski, Z., Particle size effects on the desorption properties of nanostructured magnesium hydride ( MgH2) synthesized by controlled reactive mechanical milling (CRMM), Journal of Alloys and Compounds, 424 (2006) 356- 364. 
19. Mahmoudi, N., Kaflou, A., Simchi, A., Hydrogen desorption properties of MgH2-TiCr1.2Fe0.6 nanocomposite prepared by high-energy mechanical alloying, Journal of Power Sources, 196 (2011) 4604–4608.
20. Khodaparast, V., Rajabi, M., Hydrogen Desorption Properties of MgH2-5 Wt% Ti-Mn-Cr Composite via Combined Melt Spinning and Mechanical Alloying, Procedia Materials Science, 11 (2015) 611–615.
21. Varin, R.A., Czujko, T., Wronski, Z., Particle size, grain size and ɣ-MgH2 effects on the desorption properties og nanocrystalline commercial magnesium hydride processes by controlled mechanical milling, Nanotechnology, 17 (2006) 3856-3865.
22. Gasan, H., Celik, O.N., Aydinbeyli, N., Yaman, M., Effect of V, Nb, Ti and graphite additions on the hydrogen desorption temperature of magnesium hydride, International Journal of  Hydrogen Energy, 37 (2012) 1912-1918.
23. Hanada, N., Ichikawa, T., Fujji, H., Catalytic effect of Nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling, Journal of Physical chemistry, 109 (2005) 7188-7194.
24. Ares Fernandez, J.R., Aguey-Zinsou, K.F., Klassen, T., Bormann, R., Influence of impurities on the milling process of MgH2, Journals of Alloys and Compounds, 729 (2007) 434-435.
25. Liang, G., Synthesis and hydrogen storage properties of Mg-based alloys, Journal of Alloys and Compounds, 370 (2004) 123-128.
26. Lin, H.J., Ouyang, L.Z., Wang, H., Zhao, D.Q., Wang, W.H., Sun, D.L., Zhu, M., Hydrogen storage properties of Mg-Ce-Ni nanocomposite induced from amorphous precursor with the highest Mg, International Journal of  Hydrogen Energy, 37 (2012) 14329-14335.
27. Shang, C.X., Bououdina, M., Song, Y., Guo, Z.X., Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage, International Journal of Hydrogen Energy, 29 (2004) 73-80.
28. Motavalli, A., Rajabi, M., Gholipoor, A., Effect of Milling Time on Hydrogen Desorption Properties of Nanocrystalline MgH2, Journal of Advanced Materials and Processing, 2 (2014) 67-72.
29. Song, M.Y., Baek, S.H., Bobet, J.L., Hong, S.H., Hydrogen storage properties of a Mg–Ni–Fe mixture prepared via planetary ball milling in a H2 atmosphere, International Journal of Hydrogen Energy, 35 (2010) 10366–10372.
30. Libowitz, G.G., Nonstoichiometry in chemical compounds, Progress in Solid State Chemistry, 2 (1965) 216-264.
31. Mahmoudi, N., Kaflou, A., Simchi, A.,  Synthesis of a nanostructured MgH2–Ti alloy composite for hydrogen storage via combined vacuum arc remelting and mechanical alloying, Materials Letters, 65 (2011) 1120–1122.