Document Type : Original Reaearch Article

Authors

1 Malek Ashtar university of technology

2 Malek Ashtar University of Technology

3 Malek ashtar university of technology

10.30501/jamt.2024.419852.1290

Abstract

Microstructural investigation of the cast and homogenized Al10Co25Cr8Fe15Ni36Ti6 high entropy alloy is the purpose of this study. In this article, the microstructure of the high entropy alloy was investigated after casting in vacuum induction melting and electro slag remelting processes and also after homogenized at the temperature of 1220 °C for the time of 17 hr using optical microscopy, Scanning electron microscopy, and X-ray diffraction. On the basis of theoretical measurements, the mixing entropy, atomic size differences, and Valence electron concentration are 13.05 kJ/mol, 8.8 and 7.97, respectively. These values predicted the formation of a solid solution matrix as the type of BCC + FCC and intermetallic phases. Cast alloy microstructure included γ+ γʹ in dendritic zones and γʹ+ NiAl in interdendritic areas. After homogenization, the dendritic structures are almost eliminated and they are discontinuous which is an indication of elements distribution homogenization. NiAl phase is also omitted after the homogenization process.

Keywords

Main Subjects

Asgarkhani, N., Seifollahi, M., & Abbasi, S. M. (2023). Effect of aging treatment on the microstructure and mechanical properties of Al0.7CoCrFeNi high entropy alloy. International Journal of Engineering, 36(6), 1060-1065. doi:10.5829/IJE.2023.36.06C.04
Brooks, C. R. (1984). Heat treatment, structure, and properties of nonferrous alloys. Metals Park: American Society Metals,.ISBN: ‎ 978-0871701381
Daoud, H., Manzoni, A. M., Wanderka, N., & Glatzel, U. (2015). High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). Journal of Materials, 67(10), 2271-2277. doi: 10.1007/s11837-015-1484-7
Durand-Charre, M. (2017). The microstructure of superalloys. Routledge. doi:10.1201/9780203736388
Ghaderi, A., Moghani Algholandis, H., & Soltanalinezhad, M. (2019). Effect of annealing an microstructure and hardness of l0.5CoCrFeNi high entropy alloy. 8th imat. Tehran: civilika. IMES13_387
Guo, S., Ng, C., Lu, J., & Liu, C. T. (2011). Effect of valence electron concentration on stability of FCC or bcc phase in high entropy alloys. Journal of Applied Physics, 109(10), 221-230.doi: 10.1063/1.3587228
 
Guo, Q., Xu, X., Pei, X., Duan, Z., Liaw, P. K., Hou, H., & Zhao, Y. (2023). Predict the phase formation of high-entropy alloys by compositions. Journal of Materials Research and Technology, 22, 3331-3339. doi:10.1016/j.jmrt.2022.12.143
Huo, W. Y., Shi, H. F., Ren, X., & Zhang, J. Y. (2015). Microstructure and wear behavior of CoCrFeMnNbNi high-entropy alloy coating by TIG cladding. Advances in Materials Science and Engineering, 2015, 178-186. doi:10.1155/2015/647351
Jiang, L., Lu, Y., Dong, Y., Wang, T., Cao, Z., & Li, T. (2014). Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0. 5 alloy casting ingot. Intermetallics, 44, 37-43. doi:10.1016/j.intermet.2013.08.016
Ma, L., Wan, J., Lai, Z., Wu, Z., Yang, B., & Zhao, P. (2023). Microstructure and mechanical property of Al56-xCo24Cr20Nix eutectic high-entropy alloys with an ordered FCC/BCT phase structure. Journal of Alloys and Compounds, 936, 168-194. doi:10.1016/j.jallcom.2022.168194
Manzoni, A. M., Haas, S., Yu, J. M., Daoud, H. M., Glatzel, U., Aboulfadl, H., ... & Wanderka, N. (2019). Evolution of γ/γ' phases, their misfit and volume fractions in Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy. Materials Characterization, 154, 363-376. doi:10.1016/j.matchar.2019.06.009
Manzoni, A. M., & Glatzel, U. (2019). New multiphase compositionally complex alloys driven by the high entropy alloy approach. Materials Characterization, 147, 512-532. doi:10.1016/j.matchar.2018.06.036
Mitchell, R. J., Preuss, M., Tin, S., & Hardy, M. C. (2008). The influence of cooling rate from temperatures above the γ′ solvus on morphology, mismatch and hardness in advanced polycrystalline nickel-base superalloys. Materials Science and Engineering A, 473(1-2), 158-165. doi:10.1016/j.msea.2007.04.098
Munitz, A., Salhov, S., Hayun, S., & Frage, N. (2016). Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 683, 221-230. doi:10.1016/j.jallcom.2016.05.034
Shen, Q., Huang, D., Li, F., Liu, M., & Wang, X. (2023). Microstructures and mechanical properties of the precipitation strengthened Al0.4Cr0.7FexNi2V0.2 high entropy alloys. Materials Science and Engineering A, 864, 144606. doi: 10.1016/j.msea.2023.144606
Shi, Y., Collins, L., Feng, R., Zhang, C., Balke, N., Liaw, P. K., & Yang, B. (2018). Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corrosion Science, 133, 120-131. doi:10.1016/j.corsci.2018.01.030
Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., & Zhang, W. (2014). High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. Journal of Materials, 66(10), 1984-1992. doi:10.1007/s11837-014-1085-x
Yuan, J., Zhang, H., Wang, Z., Han, P., & Qiao, J. (2023). Contribution of coherent precipitates on mechanical properties of CoCrFeNiTi0.2 high-entropy alloy at room and cryogenic temperatures. Intermetallics, 154, 107-820. doi:10.1016/j.intermet.2022.107820
Zeng, X., Li, F., Zhou, X., Yan, W., Li, J., Yang, D., ... & Liu, M. (2023). The phase stability at intermediate-temperature and mechanical behavior of the dual-phase AlCoCr0.5FexNi2.5 high entropy alloys. Materials Chemistry and Physics, 297, 1