نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 گروه بهداشت، ایمنی و محیط زیست، شرکت پتروپارس، تهران، تهران، ایران

2 استادیار، پژوهشکده انرژی، پژوهشگاه مواد و انرژی، مشکین دشت، البرز، ایران

چکیده

در این تحقیق، زئولیت سلسله مراتبی ZSM، تهیه و به منظور استفاده در حذف یون نیترات، به­ وسیله تترا اتیلن پنتا آمین، اصلاح شد. ویژگی های ساختاری جاذب­ های سنتز شده، با استفاده از پراش اشعه ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM)، طیف سنجی زیر­قرمز تبدیل فوریه (FT-IR) و تجزیه و تحلیل جذب-واجذب N2، مورد بررسی قرار گرفت. نتایج نشان داد که زئولیت سلسله مراتبی اصلاح شده با تترا اتیلن پنتا آمین، ظرفیت جذب بالاتری نسبت به زئولیت سلسله مراتبی اصلاح نشده در حذف یون نیترات دارد. ظرفیت جذب بالاتر زئولیت آمین ­دار­شده، به ­دلیل حضور گروه ­های آمینی تترا اتیلن پنتا آمین است که منجر به افزایش سایت­ های فعال جاذب و برهم ­کنش الکترواستاتیکی بین سطح جاذب و آنیون ­های نیترات می­ شود. تأثیر چهار متغیر عملیاتی، شامل غلظت، مقدار جاذب، pH و زمان تماس، بر فرایند حذف نیترات، با استفاده از روش سطح پاسخ طرح مرکب مرکزی (RSM-CCD)، در 22 آزمایش و 5 سطح، مورد بررسی و بهینه­ سازی قرار گرفت. مقادیر بهینه برای بیشینه ظرفیت حذف، غلظتِ 50 میلی گرم بر لیتر نیترات، مقدار 005/0 گرم جاذب، زمان 25 دقیقه و 4=pH به دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Optimization of Nitrate Removal from Aqueous Solutions with ZSM Hierarchical Zeolite Modified with Amine Using Response Surface Method

نویسندگان [English]

  • Samira Salehi 1
  • Mojtaba Hosseinifard 2

1 Department of Health, Safety and Environment, Petropars Company, Tehran, Tehran, Iran

2 Assistant Professor, Department of Energy, Materials and Energy Research Center (MERC), MeshkinDasht, Alborz, Iran

چکیده [English]

In this study, the ZSM hierarchical zeolite was prepared and modified by tetraethylenepentamine to be used to remove nitrate ions. The features of synthesized adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR)and nitrogen adsorption–desorption isotherms. The results showed that the modified hierarchical zeolite with the tetraethylenepentamine had a higher adsorption capacity than that of the unmodified hierarchical zeolite in the removal of nitrate ion. The higher adsorption capacity of the amine modified zeolite is due to the presence of amine groups of tetraethylenepentamine, which leads to an increase in the active sites of adsorbent and an electrostatic interaction between the adsorbent surface and nitrate anions. The effect of four parameters including concentration, adsorbent dose, pH and contact time on the nitrate removal using Central composite design approach-based response surface methodology (RSM-CCD) and was investigated and optimized in 22 experiments and 5 levels. Optimal values for a maximum adsorption capacity were 50 milligrams per liter of nitrate, 0.005 g of adsorbent, 25 min and pH = 4.
 

کلیدواژه‌ها [English]

  • Zeolite
  • Tetraethylenepentamine
  • Nitrate
  • Adsorption
  • Response Surface Methodology (RSM)
  1.  

    1. Kang, J. -K., Kim, S. -B., "Synthesis of quaternized mesoporous silica SBA-15 with different alkyl chain lengths for selective nitrate removal from aqueous solutions", Microporous and Mesoporous Materials, Vol. 295, (2020), 109967. https://doi.org/10.1016/j.micromeso.2019.109967
    2. Lazaratou, C. V., Vayenas, D. V., Papoulis, D., "The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review", Applied Clay Science, Vol. 185, (2020), 105377. https://doi.org/10.1016/j.clay.2019.105377
    3. Salehi, S., Hosseinifard, M., "Removal of phosphate from aqueous media by lanthanum modified nanochitosan", Journal of Advanced Materials and Technologies (JAMT), Vol. 9, No. 2, (2020), 9-18. https://doi.org/0.30501/jamt.2020.206415.1053
    4. Tyagi, S., Rawtani, D., Khatri, N., Tharmavaram, M., "Strategies for nitrate removal from aqueous environment using nanotechnology: A review", Journal of Water Process Engineering, Vol. 21, (2018), 84-95. https://doi.org/10.1016/j.jwpe.2017.12.005
    5. Mook, W. T., Chakrabarti, M. H., Aroua, M. K., Khan, G. M. A., Ali, B. S., Islam, M. S., Abu Hassan, M. A., "Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review", Desalination, Vol. 285, (2012), 1-13. https://doi.org/10.1016/j.desal.2011.09.029
    6. Yazdi, F., Anbia, M., Salehi, S., "Characterization of functionalized chitosan-clinoptilolite nanocomposites for nitrate removal from aqueous media", International Journal of Biological Macromolecules, Vol. 130, (2019), 545-555. https://doi.org/10.1016/j.ijbiomac.2019.02.127
    7. Salehi, S., Hosseinifard, M., "Optimized removal of phosphate and nitrate from aqueous media using zirconium functionalized nanochitosan-graphene oxide composite", Cellulose, Vol. 27, (2020), 8859-8883. https://doi.org/10.1007/s10570-020-03382-5
    8. Bhatnagar, A., Sillanpää, M., "A review of emerging adsorbents for nitrate removal from water", Chemical Engineering Journal, Vol. 168, No. 2, (2011), 493-504. https://doi.org/10.1016/j.cej.2011.01.103
    9. Murnane, J. G., Fenton, O., Healy, M. G., "Impacts of zeolite, alum and polyaluminum chloride amendments mixed with agricultural wastes on soil column leachate, and CO2 and CH4 emissions", Vol. 206, (2018), 398-408. https://doi.org/10.1016/j.jenvman.2017.10.046
    10. Teimouri, A., Ghanavati Nasab, Sh., Vahdatpoor, N., Habibollahi, S., Salavati, H., Najafi Chermahini, A. R., "Chitosan/zeolite Y/nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution", International Journal of Biological Macromolecules, Vol. 93, Part A, (2016), 254-266. https://doi.org/10.1016/j.ijbiomac.2016.05.089
    11. Kalaruban, M., Loganathan, P., Shim, W., Kandasamy, J., Ngo, H., Vigneswaran, S., "Enhanced removal of nitrate from water using amine-grafted agricultural wastes", Science of The Total Environment, Vol. 565, (2016), 503-510. https://doi.org/10.1016/j.scitotenv.2016.04.194
    12. Ye, Y. -L., Fu, M. -Q., Chen, H. -L. , Zhang, X. -M., "Effect of acidity on the catalytic performance of ZSM-5 zeolites in the synthesis of trioxane from formaldehyde", Journal of Fuel Chemistry and Technology, Vol. 48, No. 3, (2020), 311-320. https://doi.org/10.1016/S1872-5813(20)301-014
    13. Reeve, P. J., Fallowfield, H. J., "Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms", Journal of Environmental Management, Vol. 205, (2018), 253-261. https://doi.org/10.1016/j.jenvman.2017.09.077
    14. Besharatlou, S., Anbia, M., Salehi, S., "Optimization of sulfate removal from aqueous media by surfactant-modified layered double hydroxide using response surface methodology", Materials Chemistry and Physics, Vol. 262, (2021), 124322. https://doi.org/10.1016/j.matchemphys.2021.124322
    15. Wan, Z., Wu, W., Chen, W., Yang, H., Zhang, D., "Direct synthesis of hierarchical ZSM-5 zeolite and its performance in catalyzing methanol to gasoline conversion", Industrial & Engineering Chemistry Research, Vol. 53, No. 50, (2014), 19471-19478. https://doi.org/10.1021/ie5036308
    16. Wang, L., Yin, C., Shan, Z., Liu, S., Du, Y., Xiao, F. -S., "Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 340, No. 1-3, (2009), 126-130. https://doi.org/10.1016/j.colsurfa.2009.03.013
    17. Tajer, M., Anbia, M., Salehi, S., "Fabrication of polyacrylonitrile hybrid nanofiber scaffold containing activated carbon by electrospinning process as nanofilter media for SO2, CO2, and CH4 adsorption", Environmental Progress & Sustainable Energy, Vol. 40, No. 1, (2021), e13498. https://doi.org/10.1002/ep.13498
    18. Salehi, S., Hosseinifard, M., "Highly efficient removal of phosphate by lanthanum modified nanochitosan-hierarchical ZSM-5 zeolite nanocomposite: Characteristics and mechanism", Cellulose, Vol. 27, (2020), 4637-4664. https://doi.org/10.1007/s10570-020-03094-w
    19. Narayanan, S., Vijaya, J. J., Sivasanker, S., Ragupathi, C., Sankaranarayanan, T., Kennedy, L. J., "Hierarchical ZSM-5 catalytic performance evaluated in the selective oxidation of styrene to benzaldehyde using TBHP", Journal of Porous Materials, Vol. 23, No. 3, (2016), 741-752. https://doi.org/10.1007/s10934-016-0129-8
    20. Salehi, S., Hosseinifard, M., "Evaluation of CO2 and CH4 adsorption using a novel amine modified MIL-101-derived nanoporous carbon/polysaccharides nanocomposites: Isotherms and thermodynamics", Chemical Engineering Journal, Vol. 410, (2021), 128315. https://doi.org/10.1016/j.cej.2020.128315
    21. Orlando, U., Baes, A., Nishijima, W., Okada, M., "Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity", Chemosphere, Vol. 48, No. 10, (2002), 1041-1046. https://doi.org/10.1016/S0045-6535(02)00147-9
    22. Yang, L., Yang, M., Xu, P., Zhao, X., Bai, H., Li, H., "Characteristics of nitrate removal from aqueous solution by modified steel slag", Water, Vol. 9, No. 10, (2017), 757. https://doi.org/10.3390/w9100757
    23. Rajeswari, A., Amalraj, A., Pius, A., "Adsorption studies for the removal of nitrate using chitosan/PEG and chitosan/PVA polymer composites," Journal of Water Process Engineering, Vol. 9, (2016), 123-134. https://doi.org/10.1016/j.jwpe.2015.12.002
    24. Dewage, N. B., Liyanage, A. S., Pittman Jr, C. U., Mohan, D., Mlsna, T., "Fast nitrate and fluoride adsorption and magnetic separation from water on α-Fe2O3 and Fe3O4 dispersed on Douglas fir biochar," Bioresource Technology, Vol. 263, (2018), 258-265. https://doi.org/10.1016/j.biortech.2018.05.001
    25. Xi, Y., Mallavarapu, M., Naidu, R., "Preparation, characterization of surfactants modified clay minerals and nitrate adsorption", Applied Clay Science, Vol. 48, No. 1-2, (2010), 92-96. https://doi.org/10.1016/j.clay.2009.11.047
    26. Kumar, I. A., Jeyaprabha, C., Meenakshi, S., Viswanathan, N., "Hydrothermal encapsulation of lanthanum oxide derived Aegle marmelos admixed chitosan bead system for nitrate and phosphate retention", International Journal of Biological Macromolecules, Vol. 130, (2019), 527-535. https://doi.org/10.1016/j.ijbiomac.2019.02.106
    27. Kumar, I. A., Viswanathan, N., "Micro-encapsulation and hydrothermal tuning of amine decorated magnetic alginate hybrid beads for nitrate and phosphate remediation", Journal of the Taiwan Institute of Chemical Engineers, Vol. 102, (2019), 283-296. https://doi.org/10.1016/j.jtice.2019.06.017
    28. Jóźwiak, T., Filipkowska, U., Szymczyk, P., Kuczajowska-Zadrożna, M., Mielcarek, A., "The use of cross-linked chitosan beads for nutrients (nitrate and orthophosphate) removal from a mixture of P-PO4, N-NO2 and N-NO3", International Journal of Biological Macromolecules, Vol. 104, (2017), 1280-1293. https://doi.org/10.1016/j.ijbiomac.2017.07.011
    29. Hamoudi, S., Belkacemi, K., "Adsorption of nitrate and phosphate ions from aqueous solutions using organically-functionalized silica materials: Kinetic modeling", Fuel, Vol. 110, (2013), 107-113. https://doi.org/10.1016/j.fuel.2012.09.066