نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مواد، دانشکده فنی و مهندسی، واحد کرج، دانشگاه آزاد اسلامی، کرج، البرز، ایران

2 استادیار، گروه مهندسی مواد، دانشکده فنی و مهندسی، واحد کرج، دانشگاه آزاد اسلامی، کرج، البرز، ایران

چکیده

نظر به اهمیت آلیاژهای منیزیم به جهت وزن کم آنها، حذف محدودیت­های سطحی مانند سایش و خوردگی به توسعه و افزایش کاربرد آنها کمک می کند.در تحقیق حاضر، پوشش نانوکامپوزیتی Ni-P-GO به روش الکترولس بر سطح  AZ31D اعمال گردید. پس از آبکاری، عملیات کریستالیزاسیون در دو دمای °C ۲۵۰ و °C ۵۰۰ به مدت یک ساعت انجام شد. نتایج بررسی­ به وسیله پراش پرتو ایکس (XRD) و میکروسکوپ الکترونی روبشی (SEM) نشان داد که پوشش با مورفولوژی گل­کلمی به صورت نیمه آمورف بر سطح نمونه تشکیل شده است و پس از کریستالیزاسیون با حفظ مورفولوژی در کنار رشد کلونی­های پوشش، فازهای میانی فسفید-نیکل تشکیل شدند. با افزایش میزان فسفر زمینه، تمایل برای جذب نانو­صفحات GO افزایش یافت. در دماهای پایین، در ابتدا فاز Ni2P تشکیل گردید که با افزایش میزان فسفر زمینه و دمای کریستالیزاسیون این فاز به Ni3P تبدیل گردید. این عمل افزایش سختی را به جهت ترسیب فازهای میانی و کریستالیزاسیون درپی داشت. با افزایش فسفر زمینه در دمای   °C ۵۰۰ انرژی لازم برای تشکیل فازهای ناپایدار Ni5p 2 و Ni8p 3 تأمین گردید. نتایج آزمون پلاریزاسیون نشان داد که اعمال پوشش در مقایسه با زیرلایه منجر به افزایش مقاومت به خوردگی می­ گردد. افزایش فسفر در زمینه به جهت افزایش چگالی لایه هیپوفسفیتی، منجر به افزایش مقاومت به خوردگی می­گردد. با انجام عملیات حرارتی، مقاومت به خوردگی در مقایسه با حالت بدون عملیات حرارتی کمتر شد. با افزایش دمای عملیات حرارتی، جریانی به میزان A/cm2µ 424/0 از سطح گذشت که بازهم از جریان عبوری A/cm2µ  328/1 که مختص زیرلایه بدون پوشش   می­ باشد، کمتر است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

The Effect P Content of High and Low Temperature Heat Treatment on the Properties of Ni-P-GO Electroless Nanocomposite Coating on Magnesium Alloy

نویسندگان [English]

  • Mehrdad Hanachi 1
  • Zahra Sadat Seyedraoufi 2

1 M. Sc. Student, Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Alborz, Iran

2 Assistant Professor, Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Alborz, Iran

چکیده [English]

In this study, Ni-P-GO nanocomposite coating was applied on the AZ31D surface by the electroless method. After coating, the crystallization process was carried out at 250 °C and 500 °C temperatures for one hour. As a result, microstructural studies by X-ray diffraction (XRD) and scanning electron microscopy (SEM) revealed that a coating with the semi-amorphous cauliflower morphology formed on the surface. Moreover, after the crystallization process not only the morphology was preserved and the coating colony experienced growth, but also the intermediate phase of nickel phosphide was formed. Therefore, the results showed that as P content increases, the tendency to absorb GO nanoparticles increases. At low temperatures, the Ni2P phase was initially formed. However, as the P content and the crystallization temperature increased Ni2P transformed to Ni3P. As a consequence, this improved the hardness due to both precipitation of the intermediate phases and the crystallization process. As the P increased at 500 °C, the energy needed for forming unstable Ni5p < sub>2 and Ni8p < sub>3 phases was provided. The results of the polarization test showed that applying the coating in comparison with the substrate leads to an increase in corrosion resistance. Besides, increasing P in the field increases the density of the hypophosphite layer which leads to an improvement in corrosion resistance. Corrosion resistance diminished as heat treatment was conducted. Also, as the temperature of the heat treatment increased, 0.424 A/cm2µ passed the surface, which is still lower than 1.328 A/cm2µ, this is specific to the uncoated substrate

کلیدواژه‌ها [English]

  • Coating
  • Electroless
  • Heat Treatment
  • Corrosion
  • AZ31D
1.Jothi, S., Jianshe, L., Wei, S., "Electroless nickel, alloy, composite and nano coatings–A critical review", Journal of Alloys and Compounds, Vol. 517, (2013), 183-204. https://doi.org/10.1016/j.jallcom.2013.03.107
2. Prasanta, S., Suman, K. D., "Tribology of electroless nickel coatings–A review", Materials & Design, Vol. 32, (2011), 1760-1775. https://doi.org/10.1016/j.matdes.2010.11.013
3. Farzaneh, A., Mohammadi, M., Ehteshamzadeha, M., Mohammadi, F., "Electrochemical and structural properties of electroless Ni-P-SiC nanocomposite coatings", Applied Surface Science, Vol. 276, (2013), 697-704. https://doi.org/10.1016/j.apsusc.2013.03.156
3.Liuhui, Y., Weigang, H., Xu, Z., "Preparation and characterization of Ni–P–nanoTiN electroless composite coatings", Journal of Alloys and Compounds, Vol. 509, (2011), 4154-4159. https://doi.org/10.1016/j.jallcom.2011.01.025
4.Preeti, M., Agarwala, R. C., Vijaya, A., "Chemical synthesis of TiO2 nanoparticles and their inclusion in Ni–P electroless coatings", Ceramics International, Vol. 39, (2013), 9003-9008. https://doi.org/10.1016/j.ceramint.2013.04.101
4. Zhen, L., Jingbo, W., Jinjun, L., Junhu, M., "Tribological characteristics of electroless Ni–P–MoS2 composite coatings at elevated temperatures’’, Applied Surface Science, Vol. 264, (2013), 516-521. https://doi.org/10.1016/j.apsusc.2012.10.055
5. Ranganatha, S., Venkatesha, T. V., Vathsala, K., "Electroless Ni–W–P coating and its nano-WS2 composite: Preparation and properties", Industrial & Engineering Chemistry Research, Vol. 51, (2012), 7932-7940. https://doi.org/10.1021/ie300104w
6. Liew, K. W., Chia, S. Y., Kok, C. K., Low, K. O., "Evaluation on tribological design coatings of Al2O3, Ni–P–PTFE and MoS2 on aluminium alloy 7075 under oil lubrication", Materials & Design, Vol. 48, (2013), 77-84. https://doi.org/10.1016/j.matdes.2012.08.010
7. Karthikeyan, S., Ramamoorthy, B., "Effect of reducing agent and nano Al2O3 particles on the properties of electroless Ni–P coating", Applied Surface Science, Vol. 307, (2014), 654-660. https://doi.org/10.1016/j.apsusc.2014.04.092
8. Hui-Long, W., Ling-Yun, L., Yong, Dou., Wen-Zhu, Z., Wen-Feng, J., "Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy", Applied Surface Science, Vol. 286, (2013), 319-327. https://doi.org/10.1016/j.apsusc.2013.09.079
9. Jafari, M., Enayati, M. H., Salehi, M., Nahvi, S. M., Park, C. G., "Improvement in tribological properties of HVOF sprayed WC–Co coatings using electroless Ni–P coated feedstock powders", Surface and Coatings Technology, Vol. 235, (2013), 310-317. https://doi.org/10.1016/j.surfcoat.2013.07.059
10. Alishahi, M., Monirvaghefi, S. M., Saatchi, A., Hosseini, S. M., "The effect of carbon nanotubes on the corrosion and tribological behavior of electroless Ni–P–CNT composite coating", Applied Surface Science, Vol. 258, (2012), 2439-2446. https://doi.org/10.1016/j.apsusc.2011.10.067
11. Frank, C. W., de León, C. P., "Versatile electrochemical coatings and surface layers from aqueous methanesulfonic acid", Surface and Coatings Technology, Vol. 259, (2014), 676-697. https://doi.org/10.1016/j.surfcoat.2014.10.010
12. Songfeng, P., Hui-Ming, C., "The reduction of graphene oxide", Carbon, Vol. 50, (2012), 3210-3228. https://doi.org/10.1016/j.carbon.2011.11.010
13. Daniel, R. D. Sungjin, P., Christopher W. B., Rodney S. R., "The chemistry of graphene oxide", Chemical Society Reviews, Vol. 39, (2010), 228-240. https://doi.org/10.1039/b917103g
14. Hanachi, M., Seyedraoufi, Z. S., Samiee, M., Shajari, Y., "Effect of phosphorus content and heat treatment temperature on microstructure and corrosion resistance of Ni–(X)P–GO nanocomposite coating on AZ31D alloy", Journal of Bio and Tribo Corrosion, Vol. 7, (2021). https://doi.org/10.1007/s40735-020-00468-2
15. Da, K., Liye, X., Lei, L., Wenbin, H., Yating, W., "Graphene–nickel composites", Applied Surface Science, Vol. 273, (2013), 484-490. https://doi.org/10.1016/j.apsusc.2013.02.066
16. Buchtik, M., Krystynova, M., Másilko, J., Wasserbauer, J., "The effect of heat treatment on properties of Ni–P coatings deposited on AZ91 magnesium alloy", Coating, Vol. 9, (2019), 461-469. https://doi.org/10.3390/coatings9070461
17. Fayyad, E. M., Abdullah, A. M., Hassan, M. K., Mohamed, A. M., Jarjoura, G., and Farhat, Z., "Recent advances in electroless-plated Ni-P and its composites for erosion and corrosion applications: A review", Emergent Materials, Vol. 1, (2018), 3-24. https://doi.org/10.1007/s42247-018-0010-4
18. Jiang, J., Chen, H., Zhu, L., Qian, W., Han, S., Lin, H., Wu, H., "Effect of heat treatment on structures and mechanical properties of electroless Ni–P–GO composite coatings", RCS Advances, The Royal Society of Chemistry, Vol. 6, (2016), 109001-109008. https://doi.org/10.1039/C6RA22330C
19. Yan, M., Ying, H. G., Ma, T. Y., "Improved microhardness and wear resistance of the asdeposited electroless Ni–P coating", Surface & Coatings Technology, Vol. 202, (2008), 5909-5913. https://doi.org/10.1016/j.surfcoat.2008.06.180
20. Czagány, M., Peter, B., Gyorgy, K., "The influence of the phosphorous content and heat treatment on the nano-micro-structure, thickness and micro-hardness of electroless Ni-P coatings on steel", Applied Surface Science, Vol. 423, (2017), 160-169. https://doi.org/10.1016/j.apsusc.2017.06.168
21. Karthikeyan, S., Vijayaraghavan, L., "Investigation of the surface properties of heat treated electroless Ni–P coating", Transactions of the IMF, Vol. 94, (2016), 265-273. https://doi.org/10.1080/00202967.2016.1208861
22. Martyak, N. M., Drake, K., "Peak profileanalysis of electroless nickel coatings", Journal of Alloys and Compounds, Vol. 321, (2000), 30-40. https://doi.org/10.1016/S0925-8388(00)01099-9
23. Tabatabaei, F., Raeissi, K., Saatchi, A., ''Effect of heat treatment on tribocorrosion behavior of amorphous and nanostructure Ni-P electroless coatings'', Science and Surface Engineering, Vol. 20, (2013), 55-65. https://doi.org/10.1179/1743294413Y.0000000175
24. Huihui, W., Fan, L., Wenbo, G., Fengying, Y., Lifeng, H., Jibo, J., Sheng, H., "Preparation of Ni–P–GO composite coatings and its mechanical properties", Surface and Coatings Technology, Vol. 272, (2015), 25-32. https://doi.org/10.1016/j.surfcoat.2015.04.028
25. Shajari, Y., Alizadeh, A., Seyedraoufi, Z. S., Razavi, S. H., Shamakhi. H., "The effect of heat treatment on wear characteristics of nanostructure Ni–B coating on marine bronze", Materials Research Express, Vol. 6, (2019), 105040. https://doi.org/10.1088/2053-1591/ab395d
26. Ashassi-Sorkhabi, H., Rafizadeh, S., "Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni–P alloy deposits", Surface and Coatings Technology, Vol. 176 (2004), 318-326. https://doi.org/10.1016/S0257-8972(03)00746-1
27. Elsener, B., Crobu, M., Scorciapino, M. A., Rossi, A., "Electroless deposited Ni-P alloys: corrosion resistance mechanism", Journal of Applied Electrochemistry, Vol. 38, (2008), 1053-1060. https://doi.org/10.1007/s10800-008-9573-8
28. Fundo, A. M., Abrantes, L. M., "The electrocatalytic behaviour of electroless Ni–P alloys", Journal of Electroanalytical Chemistry, Vol. 600, (2007), 63-79. https://doi.org/10.1016/j.jelechem.2006.03.023