نوع مقاله : مقاله کامل پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، آزمایشگاه بیومواد، گروه مهندسی و علوم زیستی، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، تهران، ایران

2 استادیار، آزمایشگاه بیومواد، گروه مهندسی و علوم زیستی، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، تهران، ایران

چکیده

نانوذرات اکسید روی از دو مسیر متفاوت از طریق فرایند رسوب ­نشانی سنتز شدند و تأثیر متغیرهای فرایند بر ساختار، اندازه و خواص ضدباکتریایی نانوذرات بررسی شد. ریخت­ شناسی و ساختار بلوری به­ وسیله میکروسکوپ الکترونی روبشی نشر میدانی (FESEM) و پراش پرتو ایکس (XRD) مطالعه شد. تصاویر FESEM نشان داد نانوذرات سنتز­شده بدون عامل پایدارکننده و در دمای عملیات حرارتی بالاتر، دارای اندازه ذرات در محدوده 120-20 نانومتر بودند؛ درحالی‌که اندازه نانوذرات سنتزشده با عامل پایدارکننده در دمای پایین ­تر در محدوده 70-10 نانومتر قرار داشت. از مسیر سنتز حاوی عامل پایدارکننده برای ورود یون مس استفاده شد. نتایج پراش پرتو ایکس نشان داد افزودن مقادیر کم یون مس (Zn0.97Cu0.03O) منجر به ورود این یون در ساختار بلوری اکسید روی خواهد شد؛ درحالی­که در مقادیر بالاتر (Zn0.95Cu0.05O)، علاوه‌بر اکسید روی، فاز اکسید مس نیز تشکیل می­ شود. آزمون ضدباکتریایی در برابر باکتری گرم مثبت استافیلوکوکوس اورئوس نشان داد که نانوذرات اکسید روی دوپ­ شده با غلظت پایین یون مس، از فعالیت ضدباکتریایی بالاتری برخوردارند؛ بنابراین، نانوذرات اکسید روی دوپ ­شده با یون مس می­توانند به‌عنوان عامل ضدباکتریایی جدید در کاربردهای پزشکی مورد استفاده قرار گیرند.
 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Effect of Copper Ion Incorporation on Structure and Antibacterial Properties of ZnO Nanoparticles

نویسندگان [English]

  • Farzaneh Naseriyan 1
  • Abdorreza S. Mesgar 2
  • Zahra Mohammadi 2

1 M. Sc. Student, Biomaterials Laboratory, Department of Life Science and Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Tehran, Iran

2 Assistant Professor, Biomaterials Laboratory, Department of Life Science and Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Tehran, Iran

چکیده [English]

Zinc oxide nanoparticles through precipitation method as a cost-effective and flexible process by two different routes were synthesized. The effect of process parameters on the structure, particle size and antibacterial properties of nanoparticles was investigated by using FESEM, XRD and antibacterial test. FESEM micrographs showed that the nanoparticles synthesized at higher heat treatment temperature without the use of stabilizing agent have particle size within 20-120 nm but those synthesized using stabilizing agent at lower heat treatment temperature have a smaller size in the range of 10-70 nm. In other to incorporate copper into the ZnO structure, the stabilizing agent-containing route was used. The XRD results showed that the use of low concentration of copper led to incorporation of Cu into the ZnO structure. However, two phases of copper oxide and zinc oxide were formed when the higher concentration of copper was used. The antibacterial test against gram-positive bacteria Staphylococcus aureus proved the higher antibacterial activity of the copper doped zinc oxide. The findings indicate that the copper doped zinc oxide nanoparticles may be a good candidate of antibacterial agent for biomedical applications.

کلیدواژه‌ها [English]

  • ZnO Nanoparticles
  • Cu-Doped ZnO
  • Antibacterial Agent
  1. Paladini, F., Pollini, M., Sannino, A., Ambrosio, L., "Metal-based antibacterial substrates for biomedical applications", Biomacromolecules, Vol. 16, No. 7, (2015), 1873-1885. https://doi.org/10.1021/acs.biomac.5b00773
  2. Nethi, S. K., Das, S., Patra, C. R., Mukherjee, S., "Recent advances in inorganic nanomaterials for wound-healing applications", Biomaterials Science, Vol. 7, No. 7, (2019), 2652-2674. https://doi.org/10.1039/C9BM00423H
  3.  Kosolapov, D. B., Kuschk, P., Vainshtein, M. B., Vatsourina, A. V., Wießner, A., Kästner, M., Müller, R. A., "Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands", Engineering in Life Sciences, Vol. 4, No. 5, (2004), 403-411. https://doi.org/10.1002/elsc.200420048
  4. Gao, Y., Cranston, R., "Recent advances in antimicrobial treatments of textiles", Textile Research Journal, Vol. 78, No. 1, (2008), 60-72. https://doi.org/10.1177/0040517507082332
  5. Basnet, P., Larsen, G. K., Jadeja, R. P., Hung, Y. -C., Zhao, Y., "α-Fe2O3 nanocolumns and nanorods fabricated by electron beam evaporation for visible light photocatalytic and antimicrobial applications", ACS Applied Materials & Interfaces, Vol. 5, No. 6, (2013), 2085-2095. https://doi.org/10.1021/am303017c
  6. Norton, D. P., Heo, Y. W., Ivill, M. P., Ip, K., Pearton, S. J., Chisholm, M. F., Steiner, T., "ZnO: Growth, doping & processing", Materials Today, Vol. 7, No. 6, (2004), 34-40. https://doi.org/10.1016/S1369-7021(04)00287-1
  7. Gutha, Y., Pathak, J. L., Zhang, W., Zhang, Y., Jiao, X., "Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO)", International Journal of Biological Macromolecules, Vol. 103, (2017), 234-241. https://doi.org/10.1016/j.ijbiomac.2017.05.020
  8. Wang, Z. L., "Zinc oxide nanostructures: Growth, properties and applications", Journal of Physics: Condensed Matter, Vol. 16, No. 25, (2004), R829-R858. https://doi.org/10.1039/C2JM15548F
  9. Hassan, I. A., Sathasivam, S., Nair, S. P., Carmalt, C. J., "Antimicrobial properties of copper-doped ZnO coatings under darkness and white light illumination", ACS Omega, Vol. 2, No. 8, (2017), 4556-4562. https://doi.org/10.1021/acsomega.7b00759
  10. Kołodziejczak-Radzimska, A., Jesionowski, T., "Zinc oxide-from synthesis to application: A review", Materials, Vol. 7, No. 4, (2014), 2833-2881. https://doi.org/10.3390/ma7042833
  11. Wang, C., Zhang, W. X., Qian, X. F., Zhang, X. M., Xie, Y., Qian, Y. T., "A room temperature chemical route to nanocrystalline PbS semiconductor", Materials Letters, Vol. 40, No. 6, (1999), 255-258. https://doi.org/10.1016/S0167-577X(99)00085-3
  12. Sanders, E. R., "Aseptic laboratory techniques: Plating methods", Journal of Visualized Experiments : JoVE, No. 63, (2012), 3064. https://doi.org/ 10.3791/3064
  13.           Kohsari, I., Shariatinia, Z., Pourmortazavi, S. M., "Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles", International Journal of Biological Macromolecules, Vol. 91, (2016), 778-788. https://doi.org/10.1016/j.ijbiomac.2016.06.039
  14. Sharma, P. K., Dutta, R. K., Pandey, A. C., "Doping dependent room-temperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods", Journal of Magnetism and Magnetic Materials, Vol. 321, No. 24, (2009). https://doi.org/10.1016/j.jmmm.2009.07.066
  15. Vafaee, M., Ghamsari, M. S., "Preparation and characterization of ZnO nanoparticles by a novel sol-gel route", Materials Letters, Vol. 61, No. 14-15, (2007), 3265-3268. https://doi.org/10.1016/j.matlet.2006.11.089
  16. Ibrahem, E. J., Thalij, K. M., Saleh, M. K., Badawy, A. S., "Biosynthesis of zinc oxide nanoparticles and assay of antibacterial activity", American Journal of Biochemistry and Biotechnology, Vol. 13, No. 2, (2017), 63-69. https://doi.org/10.3844/ajbbsp.2017.63.69
  17. Muthukumaran, S., Gopalakrishnan, R., "Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method", Optical Materials, Vol. 34, No. 11, (2012), 1946-1953. https://doi.org/10.1016/j.optmat.2012.06.004
  18. Amornpitoksuk, P., Suwanboon, S., Sangkanu, S., Sukhoom, A., Wudtipan, J., Srijan, K., Kaewtaro, S., "Synthesis, photocatalytic and antibacterial activities of ZnO particles modified by diblock copolymer", Powder Technology, Vol. 212, No. 3, (2011), 432-438. https://doi.org/10.1016/j.powtec.2011.06.028
  19. Pourrahimi, A. M., The synthesis, surface modification and use of metal-oxide nanoparticles in polyethylene for ultra-low transmission-loss HVDC cable insulation materials, Doctoral Thesis, KTH Royal Institue of Thecnology, (2016). Available at: https://www.divaportal.org/smash/get/diva2:952950/FULLTEXT02.pdf
  20. Zhou, J., Zhao, F., Wang, Y., Zhang, Y., Yang, L., "Size-controlled synthesis of ZnO nanoparticles and their photoluminescence properties", Journal of Luminescence, Vol. 122-123, (2007), 195-197. https://doi.org/10.1016/j.jlumin.2006.01.089
  21. Talam, S., Karumuri, S. R., Gunnam, N., "Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles", ISRN Nanotechnology, Vol. 2012, (2012), 1-6. https://doi.org/10.5402/2012/372505
  22. Yu, J., Yang, J., Liu, B., Ma, X., "Preparation and characterization of glycerol plasticized-pea starch/ZnO–carboxymethylcellulose sodium nanocomposites", Bioresource Technology, Vol. 100, No. 11, (2009), 2832-2841. https://doi.org/10.1016/j.biortech.2008.12.045
  23. Amornpitoksuk, P., Suwanboon, S., Sangkanu, S., Sukhoom, A., Muensit, N., Baltrusaitis, J., "Synthesis, characterization, photocatalytic and antibacterial activities of Ag-doped ZnO powders modified with a diblock copolymer", Powder Technology, Vol. 219, (2012), 158-164. https://doi.org/10.1016/j.powtec.2011.12.032
  24. Khorsand Zak, A., Abd. Majid, W. H., Mahmoudian, M. R., Darroudi, M., Yousefi, R., "Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study", Advanced Powder Technology, Vol. 24, No. 3, (2013), 618-624. https://doi.org/10.1016/j.apt.2012.11.008
  25. Basu, P., Narendrakumar, U., Arunachalam, R., Devi, S., Manjubala, I., "Characterization and evaluation of carboxymethyl cellulose-based films for healing of full-thickness wounds in normal and diabetic rats", ACS Omega, Vol. 3, No. 10, (2018), 12622-12632. https://doi.org/10.1021/acsomega.8b02015
  26.           Garcia, S. P., Semancik, S., "Controlling the morphology of zinc oxide nanorods crystallized from aqueous solutions: The effect of crystal growth modifiers on aspect ratio", Chemistry of Materials, Vol. 19, No. 16, (2007), 4016-4022. https://doi.org/10.1021/cm061977r
  27. Shannon, R. D., "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", Acta Crystallographica Section A, Vol. 32, No. 5, (Sep. 1976), 751-767. https://doi.org/10.1107/S0567739476001551
  28. Peng, X., Xu, J., Zang, H., Wang, B., Wang, Z., "Structural and PL properties of Cu-doped ZnO films", Journal of Luminescence, Vol. 128, No. 3, (2008), 297-300. https://doi.org/10.1016/j.jlumin.2007.07.016
  29. Banu Bahşi, Z., Oral, A. Y., "Effects of Mn and Cu doping on the microstructures and optical properties of sol–gel derived ZnO thin films", Optical Materials, Vol. 29, No. 6, (2007), 672-678. https://doi.org/10.1016/j.optmat.2005.11.016
  30. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., Fiévet, F., "Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium", Nano Letters, Vol. 6, No. 4, (2006), 866-870. https://doi.org/10.1021/nl052326h
  31. Kumar, R., Umar, A., Kumar, G., Nalwa, H. S., "Antimicrobial properties of ZnO nanomaterials: A review", Ceramics International, Vol. 43, No. 5, (2017), 3940-3961. https://doi.org/10.1016/j.ceramint.2016.12.062