مطالعه سینتیک واکنش حذف فتوکاتالیستی آلاینده متیل اورانژ از آب در حضور کامپوزیت مغناطیسی Fe3O4-ZnO بر پایه اکسید گرافن

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 مجتمع آموزش عالی فنی و مهندسی اسفراین، خراسان شمالی، اسفراین، ایران

2 دانشگاه آزاد اسلامی، واحد فیروزآباد، گروه مهندسی شیمی، فیروزآباد، ایران

10.30501/jamt.2020.105744

چکیده

در این مطالعه راندمان حذف متیل اورانژ با استفاده از دو نوع فتوکاتالیست مغناطیسی حاوی ZnO در حضور و بدون حضور اکسید گرافن مورد بررسی قرار گرفت. همچنین سینتیک واکنش حذف متیل اورانژ و تاثیر پارامترهای عملیاتی از جمله زمان تابش‌دهی و کسر وزنی فتوکاتالیست‌ها با استفاده از روش آماری و آزمون چند دامنه‌ای دانکن بررسی شد. نتایج حاصل شده نشان داد راندمان حذف متیل اورانژ تحت تاثیر زمان تابش‌دهی و کسر وزنی فتوکاتالیست می‌باشد به طوری با افزایش این دو پارامتر، میزان حذف متیل اورانژ نیز افزایش می‌یابد. سینتیک واکنش تجزیه با استفاده از هر دو نوع فتوکاتالیست منطبق بر سینتیک واکنش شبه درجه اول می‌باشد و سرعت تجزیه متیل اورانژ با استفاده از فتوکاتالیست حاوی اکسید گرافن بیشتر از فتوکاتالیست فاقد اکسید گرافن می‌باشد. بررسی آماری تاثیر زمان تابش‌دهی و کسر وزنی فتوکاتالیست با استفاده از آزمون چند دامنه‌ای دانکن نشان می‌دهد هر دو پارامتر دارای تاثیر معنی‌داری بر روی حذف متیل اورانژ می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The study of kinetic reaction of the photocatalytic elimination of methyl orange in the presence of magnetic composite of Fe3O4-ZnO based on graphene oxide

نویسندگان [English]

  • Sedigheh Abbasi 1
  • Farshad Farahbod 2
  • Mohammad Imani 1
  • Ali Koroushavi 1
1 Esfarayen University of Technology, Esfarayen, North khorasan, Iran
2 Associated professor, Firoozabad Branch, Islamic Azad University, Firoozabad, Iran
چکیده [English]

The removal efficiency of methyl orange using two kinds of magnetic photocatalysts containing ZnO in the presence and absence of graphene oxide is investigated. Meanwhile, the kinetic of removal reaction of methyl orange, the effect of operational parameters such as irradiation time and weight fraction of photocatalysts based on statistical method and Duncan’s multiple range test are studied. The removal efficiency of methyl orange using both of the applied photocatalysts is affected by irradiation time and weight fraction of photocatalyst. So that the enhancement of these two parameters leads to the increment of removal efficiency of methyl orange. The results show that the kinetic reaction is pseudo first order. The rate of reaction using photocatalyst containing graphen oxide is higher than that of without it. The results of statistical analysis based on Duncan’s multiple range test reveals that both of the studied parameters have significant influence on the removal efficiency of methyl orange.

کلیدواژه‌ها [English]

  • graphene oxide
  • ZnO nanoparticles
  • Kinetic of reaction
  • Removal Efficiency
1.     S. Abbasi,   Photocatalytic Removal of Methyl Orange in Suspension Containing ZnO and SnO2 Nanoparticles and Investigation the Influence of Effective Variables on the Process, Iran. J. Health & Environ, 2016, 9, 433-442.

2.      A.  Ghaderi, S.  Abbasi, F.  Farahbod, Synthesis of SnO2 and ZnO Nanoparticles and SnO2-ZnO Hybrid for the Photocatalytic Oxidation of Methyl Orange, Iran. J. Chem. Eng.2015, 12, 96-105.

3.      S.Abbasi, Investigation the Kinetic Reaction Variation of the Methyl Orange Decomposition Using Decorated Multi-Walled Carbon Nanotubes with ZnO Nanoparticles, Influence of Nanoparticle Content, Journal of Environmental Health Engineering, 2018, 5 ,113-122.

4.      A.  Ghaderi,  S.  Abbasi,  F. Farahbod, Synthesis of ZnO-SnO2-Ag Nanocomposite and Investigation of the Photocatalytic Decomposition of Methyl Orange Using Synthesized Nanocomposite, Journal of Environmental Health Engineering, 2018, 5, 337-344.

5.       S. Abbasi, Photocatalytic activity study of coated Anatase-Rutile Titania nanoparticles with nanocrystalline tin dioxide based on the statistical analysis ,   Environmental Monitoring and Assessment, 2019, 191, 206-218.

6.   S. Abbasi, M. Hasanpour, The effect of pH on the photocatalytic degradation of methyl orange using decorated ZnO nanoparticles with SnO2 nanoparticles, J Mater Sci: Mater Electron,2017, 28, 1307–1314.

7.  S. Abbasi, Investigation of the enhancement and optimization of the photocatalytic activity of modified TiO2 nanoparticles with SnO2 nanoparticles using statistical method, Materials Research Express , 2018, 5  066302.

8.      S. Abbasi, M. Hasanpour, Variation of the photocatalytic performance of decorated MWCNTs (MWCNTs-ZnO) with pH for photo degradation of methyl orange, J Mater Sci: Mater Electron, 2017, 28, 11846-11855.

9.   S. Abbasi, M. Hasanpour, M.S.E. Kakhki, Removal efficiency optimization of organic pollutant (methylene blue) with modified multi-walled carbon nanotubes using design of experiments (DOE), J Mater Sci: Mater Electron, 2017, 28, 9900-9910.

10.   S.P. Kim, M.Y. Choi, H.C. Choi, Characterization and photocatalytic performance of SnO2–CNT nanocomposites, Appl. Surf. Sci.2015, 357 ,302-308.

11. A. Waqar, Photocatalytic, Sonocatalytic and Sonophotocatalytic Degradation of Rhodamine B using MWCNTs-ZnO nanophotocatalysts, Ultrason. Sonochem, 2013, 21,761-773.

12.     L. Gan, H. Li, L. Chen, L. Xu, J. Liu, A. Geng, C. Mei, S. Shang, Graphene oxide incorporated alginate hydrogel beads for the removal of various organic dyes and bisphenol A in water, Colloid and Polymer Science , 2018, 296, 607-615.

13.   D. Wang, L. Liu, X. Jiang, J. Yu, X. Chen, X. Chen, Adsorbent for p- phenylenediamine adsorption and removal based on graphene oxide function- alized with magnetic cyclodextrin, Appl Surf Sci, 2015, 329 , 197–205.

14.    S.Kurinobu, K. Tsurusaki, N. Y, M. Kimata, M. Hasegawa, Decomposition of pollutants in wastewater using magnetic photocatalyst particles, J Magnsm Magtc Mat, 2007 310, e1025–e1027.

15.    N. Roozban, S. Abbasi, M. Ghazizadeh, Statistical analysis of the photocatalytic activity of decorated Multi-Walled carbon nanotubes with ZnO nanoparticles, J Mater Sci: Mater Electron , 2017, 28, 6047–6055.

16.   S. Abbasi, Adsorption of Dye Organic Pollutant Using Magnetic ZnO Embedded on the Surface of Graphene Oxide, Journal of Inorganic and Organometallic Polymers and Materials , 2019.

17.   S. Abbasi, F.  Ahmadpoor, M. Imani, M.-S.  Ekrami-Kakhki, Synthesis of magnetic Fe3O4@ZnO@graphene oxide nanocomposite for photodegradation of organic dye pollutant, International, Journal of Environmental Analytical Chemistry, 2019.

18.   M.B. Tahir, G. Nabi, M. Rafique, N.R. Khalid, Role of Fullerene to improve the WO3 Performance for Photocatalytic Applications and Hydrogen Evolution, International , Journal of Energy Research, 2018, 42, 4783-4789.

19. A. Ghaderi, S. Abbasi, F. Farahbod, Synthesis, characterization and photocatalytic performance of modified ZnO nanoparticles with SnO2 nanoparticles, Materials Research Express, 2018, 5, 065908.

20.     N. Roozban, S. Abbasi, M. Ghazizadeh, The experimental and statistical investigation of the photo degradation of methyl orange using modified MWCNTs with different amount of ZnO nanoparticles, J Mater Sci: Mater Electron, 2017,  28, 7343-7352.

21.   A.H. Navidpour, M. Fakhrzad, M. Tahari, S. Abbasi, Novel photocatalytic coatings based on tin oxide semiconductor, Surface Engineering, 2018.

22.   E.D. fard, A.J. Jafari, R.R. Kalantari, M. Gholami, A. Esrafili, Photocatalytic Removal of Aniline from Synthetic Wastewater using ZnO Nanoparticle under Ultraviolet Irradiation, Iran. J. Health & Environ , 2012, 5 , 167-178.

23.   W. Baran, E. Adamek, A. Makowski, The influence of selected parameters on the photocatalytic degradation of azo-dyes in the presence of TiO2 aqueous suspension, Chem. Eng. J, 2008, 145, 242–248.