نوع مقاله : مقاله کامل پژوهشی

نویسندگان

دانشکده الکتروسرام و مهندسی برق، دانشگاه صنعتی مالک اشتر، تهران، ایران.

چکیده

ترکیبات هگزافریت باریم جانشانی شده با کاتیون­ های مختلف یکی از انواع مواد مورد توجه برای تولید کامپوزیت­ های جاذب امواج مایکروویو است. در پژوهش حاضر هگزافریت باریم جانشانی شده با منیزیم و تیتانیم با فرمول شیمیاییBaFe9(Mg1.5Ti1.5)O19 جهت مطالعه مورد توجه قرار گرفته است. به منظور بررسی تاثیر اندازه ذرات بر خواص جذب مایکروویو ذرات فریت با ابعاد میکرونی (حدود سه میکرون) و نانو (کمتر از 100 نانومتر) به روش سل ژل و از طریق کنترل نسبت اجزای واکنش و دمای کلسینه تولید شدند. سپس کیفیت تشکیل فاز و مشخصات ریزساختاری پودرها به­ ترتیب با استفاده از XRD و SEM مورد مطالعه قرار گرفت. به منظور بررسی کیفیت جذب امواج مایکروویو در نمونه­ ها، کامپوزیت­ های هگزافریت/ رزین اکریلیک با درصدهای مختلف وزنی پودر به رزین تولید شد. با استفاده از دستگاه تحلیل گر برداری شبکه  (VNA)و با به­ کارگیری شیوه اندازه­ گیری پشت­ بند فلزی، منحنی­ های تلفات انعکاسی (RL) کامپوزیت­ ها به­ عنوان معیاری از قابلیت جذب مایکروویو در باندهای فرکانسی X و Ku اندازه ­گیری شد. با بررسی نتایج پژوهش حاضر مشخص شد بر اساس منحنی­ های RL کامپوزیت­ های هگزافریت/ رزین اکریلیک حاوی ذرات نانومتری نسبت به نوع حاوی ذرات میکرونی در محدودة فرکانسی باندهای X و Ku خواص جذب مایکروویو بهتری دارند. نتایج این بررسی می ­تواند در ارتقای عملکرد و طراحی بهینة کامپوزیت های جاذب امواج مایکروویو مفید واقع شود.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Weight Percent and Particle Size of (Mg,Ti) Substituted Barium Hexaferrite Powder on Reflection loss Plots of Metal Back Ferrite/Acrylic Resin Composite

نویسندگان [English]

  • Mohammad Jazirehpour
  • Mohammad Hossein Shams

Department of Electroceram and Electrical Engineering, Malek Ashtar University of Technology, Tehran, Iran.

چکیده [English]

Barium hexaferrite compositions with different cation substitutions are known as one of the most studied materials to produce microwave absorbing composites. In the present research (Mg,Ti) substituted barium hexaferrite with chemical formula of BaFe9(Mg1.5Ti1.5)O19 have been studied. In order to investigate the effect of particle size and powder percent, micron-size (about 3μm) and nano-size (below 100nm) were synthesized via a modified sol-gel method by controlling the ingredients ratio and calcination temperature. Chemical phase formation and morphological studies were performed by XRD and SEM, respectively. In order to investigate the microwave absorption quality of the samples, ferrite/acrylic resin composites with different powder weight percents were produced. As a criterion of the microwave absorption capability, the reflection loss (RL) plots were measured at X and Ku band by the Vector Network Analyzer system and metal back method. It was found that nano-size particles have better microwave absorption efficiency and the results of the investigation may be used to enhance the design of microwave absorbing composites and their absorption performance.

کلیدواژه‌ها [English]

  • Barium Hexaferrite
  • Sol-gel
  • Microwave Absorption
  • Substitution
  1. Jazirehpour M., Seyyed Ebrahimi S.A., 2015. "Carbothermally synthesized core–shell carbon–magnetite porous nanorods for high-performance electromagnetic wave absorption and the effect of the heterointerface", Journal of Alloys and Compounds, Vol. 639, pp 280-288.
  2. Jazirehpour M., Seyyed Ebrahimi S.A., 2015. "Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles", Journal of Alloys and Compounds, Vol. 638, pp 188-196.
  3. Narang, S.B., Kaur, P., Bahel, S. and Singh, C., 2016. "Microwave characterization of Co–Ti substituted barium hexagonal ferrites in X-band", Journal of Magnetism and Magnetic Materials, Vol. 405, pp.17-21.
  4. Baniasadi, A., Ghasemi, A., Nemati, A., Ghadikolaei, M.A. and Paimozd, E., 2014. "Effect of Ti–Zn substitution on structural, magnetic and microwave absorption characteristics of strontium hexaferrite", Journal of Alloys and Compounds, Vol. 583, pp.325-328.
  5. Jian, X., Chen, X., Zhou, Z., Li, G., Jiang, M., Xu, X., Lu, J., Li, Q., Wang, Y., Gou, J. and Hui, D., 2015. "Remarkable improvement in microwave absorption by cloaking a micro-scaled tetrapod hollow with helical carbon nanofibers", Physical Chemistry Chemical Physics, Vol. 17, pp.3024-3031.
  6. Wang, L., Huang, Y., Li, C., Chen, J. and Sun, X., 2015. "A facile one-pot method to synthesize a three-dimensional graphene@ carbon nanotube composite as a high-efficiency microwave absorber", Physical Chemistry Chemical Physics, Vol. 17, pp.2228-2234.
  7. Chen, Y., Zhang, S., Liu, X., Pei, Q., Qian, J., Zhuang, Q. and Han, Z., 2015. "Preparation of solution-processable reduced graphene oxide/polybenzoxazole nanocomposites with improved dielectric properties", Macromolecules, Vol. 48, pp.365-372.
  8. Sharma, M., Singh, M.P., Srivastava, C., Madras, G. and Bose, S., 2014. "Poly (vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations", ACS applied materials & interfaces, Vol. 6, pp.21151-21160.
  9. Jazirehpour, M., Shams, M.H., Khani, O., 2012. "Modified sol–gel synthesis of nanosized magnesium titanium substituted barium hexaferrite and investigation of the effect of high substitution levels on the magnetic properties", Journal of Alloys and Compounds, Vol. 545, pp 32-40.
  10. Shams, M.H., Salehi, S.M.A. and Ghasemi, A., 2008. "Electromagnetic wave absorption characteristics of Mg–Ti substituted Ba-hexaferrite", Materials Letters, 62, pp.1731-1733.
  11. Jazirehpour, M. and Shams, M.H., 2017. "Microwave Absorption Properties of Ba–M Hexaferrite with High Substitution Levels of Mg–Ti in X Band", Journal of Superconductivity and Novel Magnetism, Vol. 30, pp.171-177.
  12. Tabatabaie, F., Fathi, M.H., Saatchi, A. and Ghasemi, A., 2009. "Effect of Mn–Co and Co–Ti substituted ions on doped strontium ferrites microwave absorption". Journal of Alloys and Compounds, 474(1-2), pp.206-209.
  13. Ghasemi, A., Hossienpour, A., Morisako, A., Liu, X. and Ashrafizadeh, A., 2008. " Investigation of the microwave absorptive behavior of doped barium ferrites". Materials & design, 29(1), pp.112-117.
  14. Chang, S., Kangning, S. and Pengfei, C., 2012. " Microwave absorption properties of Ce-substituted M-type barium ferrite". Journal of Magnetism and Magnetic Materials, 324(5), pp.802-805.
  15. Haijun, Z., Zhichao, L., Chenliang, M., Xi, Y., Liangying, Z. and Mingzhong, W., 2003. "Preparation and microwave properties of Co-and Ti-doped barium ferrite by citrate sol–gel process". Materials chemistry and physics, 80(1), pp.129-134.
  16. Shen, G., Xu, Z. and Li, Y., 2006. "Absorbing properties and structural design of microwave absorbers based on W-type La-doped ferrite and carbon fiber composites". Journal of magnetism and magnetic materials, 301(2), pp.325-330.
  17. Haijun, Z., Zhichao, L., Chengliang, M., Xi, Y., Liangying, Z. and Mingzhong, W., 2002. "Complex permittivity, permeability, and microwave absorption of Zn-and Ti-substituted barium ferrite by citrate sol–gel process". Materials Science and Engineering: B, 96(3), pp.289-295.
  18. Abbas, S.M., Dixit, A.K., Chatterjee, R. and Goel, T.C., 2007. "Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites". Journal of Magnetism and Magnetic Materials, 309(1), pp.20-24.
  19. Singh, P., Babbar, V.K., Razdan, A., Puri, R.K. and Goel, T.C., 2000" Complex permittivity, permeability, and X-band microwave absorption of CaCoTi ferrite composites". Journal of applied physics, 87(9), pp.4362-4366.
  20. Kim, S.S., Jo, S.B., Gueon, K.I., Choi, K.K., Kim, J.M. and Churn, K.S., 1991. "Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies". IEEE Transactions on Magnetics, 27(6), pp.5462-5464.
  21. Kim, D.Y., Chung, Y.C., Kang, T.W. and Kim, H.C., 1996. "Dependence of microwave absorbing property on ferrite volume fraction in MnZn ferrite-rubber composites". IEEE Transactions on Magnetics, 32(2), pp.555-558.
  22. Lin, H., Zhu, H., Guo, H. and Yu, L., 2007. "Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes". Materials Letters, 61(16), pp.3547-3550.
  23. Zhao, D.L., Li, X. and Shen, Z.M., 2009. "Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes". Journal of Alloys and Compounds, 471(1-2), pp.457-460.
  24. Kolev, S., Yanev, A. and Nedkov, I., 2006. "Microwave absorption of ferrite powders in a polymer matrix". physica status solidi c, 3(5), pp.1308-1315.