بهینه‌سازی پارامترهای موثر بر فرایند قالب‌گیری تزریقی پودر کامپوزیت فولاد زنگ‌نزن- کاربید تیتانیم (SS-TiC) جهت کاربردهای مهندسی پزشکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 بخش مهندسی پزشکی، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

2 دانشکده مهندسی مواد، دانشگاه شریف، تهران ، ایران

چکیده

در این پژوهش مراحل ساخت کامپوزیت زمینه فلزی پایه فولاد زنگ­نزن حاوی ذرات کاربید تیتانیم به روش قالب­گیری تزریقی پودر (PIM) مورد بررسی قرار گرفت. اثر عواملی مانند نرخ برش، اضافه نمودن کاربید تیتانیم، دما و بار جامد بر روی رفتار رئولوژی خوراک­های مورد استفاده در PIM مورد بحث و بررسی قرار گرفت. بر اساس نتایج  به­دست آمده بهترین خوراک و دمای مناسب برای فرایند تزریق تعیین شد. بر اساس معادلات مختلف حداکثر بارجامد بحرانی مورد محاسبه قرار گرفت. بعد از این مراحل فرایند تزریق در دو دمای 93 وoC115 و در دو فشار 5 وMPa10 انجام شد. نتایج نشان داد که با افزایش دما از 60 به 70 درجه سانتی­گراد گرانروی خوراک ها تقریبا 20% کاهش پیدا می­کند اما از دمای 70 به 80 درجه تقریبا ثابت می­ماند. میزان گرانروی تمام خوراک­ها کمتر از pa.s1000 بوده است. میزان بار جامد بحرانی محاسبه شده در این تحقیق نیز 64% حجمی می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Powder Injection Molding Process Parameter for Production SS316/TiC Composite for Biomedical Application

نویسندگان [English]

  • Mehrdad Khakbiz 1
  • Abdolreza Simchi 2
1 Division of Biomedical Engineering, Faculty of New Science and Technology, University of Tehran, Tehran, Iran
2 Department of Materials Science and Engineering, Sharif university of Technology, Tehran, Iran
چکیده [English]

The Current investigation was designed to study different steps of powder injection molding of Stainless Steel/TiC Composite. So a multi-component binder was selected and its melting, recrystallization and degradation temperatures were evaluated via DSC and TGA experiments. In order to study the rheological behavior of feedstock, a capillary rheometer was incorporated and the effects of shear rate, TiC content, temperature and solid loading on rheological behavior of feedstock were investigated and based on the results the best feedstock and processing temperature were selected. In the next step, some samples were injection molded at two temperatures (93 and 115 oC) and two pressures (5 and 10 MPa). Results showed that by increasing temperature from 60oC to 70oc the viscosity decreased 20% but will be stable in higher temperature. The viscosity of all sample was below 1000 Pa.s. the calculated solid loading was 64%. By adding TiC particles, the green density of samples decreased from 4.85 gr/cm3 to 4.7 gr/cm3.

کلیدواژه‌ها [English]

  • Powder Injection Molding
  • Composite
  • Rheology
  • Stainless steel
  1. R. M. German and A. Bose, Injection Molding of  Metal and Ceramic, MPIF, New Jersey, 1997.
  2. R. M. German, Powder Injection Molding, MPIF, New Jersey, 1990.
  3. D. Lin, D. Sanetrnik, H. Cho, S. Taek Chung, S. Jin Park, “ Rheological and thermal debinding properties of blended elemental Ti-6Al-4V powder injection , molding feedstock, Powder Technology, Vol. 311, 15 2017, pp. 357-363.
  4. A. Romero, G. Herranz, “Development of feedstocks based on steel matrix composites for metal injection moulding, Powder Technology, Vol.308, 2017, pp. 472-478
  5. V. Demers, F. Fareh, S. Turenne, N. R. Demarquette, O. Scalzo , “Experimental study on moldability and segregation of Inconel 718 feedstocks used in low-pressure powder injection molding”, Advanced Powder Technology, Vol. 29, 2018, pp. 180-190.
  6. M. Aslam, F. Ahmad, P. S. M. B. M. Yusoff, K. Altaf, R. M.German, Powder injection molding of biocompatible stainless steel biodevices”, Powder Technology, Vol. 295 2016, pp. 84-95.
  7. V. Perez-Puyana, M. Felix, A. Romero, A. Guerrero, “Development of eco-friendly biodegradable superabsorbent materials obtained by injection moulding ,Journal of Cleaner Production, Journal of Cleaner Production, Vol.198, 2018, pp. 312-319.
  8. E. Yılmaz, A. Gökçe, F. Findik, H. Gulsoy,” Metallurgical properties and biomimetic HA deposition performance of Ti-Nb PIM alloys”, Journal of Alloys and Compounds, Vol.746, 2018, pp. 301-313.
  9. R. Supati, N. H. Loh, K. A. Khor and S. B. Tor, "Mixing and Characterization of   Feedstock for Powder Injection Molding", Materials Letters. Vol. 46, 2000, pp. 109-114.
  10. C. Beebhas, C. Mutsuddy and R. G. Ford, Ceramic Injection Molding, Chapman and Hall, London, 1995.
  11. Y. Li, B. Huang and X. Qu, "Viscosity and Melt Rheology of Metal Injection Moulding Feedstock", Powder Metallurgy, Vol. 42, 1999, pp. 86-90.
  12. B. Hausnerova, "Rheological Properties of Particle Filled Polymers", www. Mat. chalmers.se/kurser/mpm065/lecture.pdf,Access in July 2003.  
  13. F. J. Liu and K. S. Chou, "Determining Critical Ceramic Powder Volume Concentration from Viscosity Measurements", Ceramics International, Vol. 26, 2000, pp. 159-164.
  14. G. P. Bierwagen, "CPVC Calculation", J. Paint. Technol., Vol. 44, 1972, pp. 46-55.
  15. Ir. R. Rutgers, "Relative Viscosity and Concentration", Rheol. Acta, Vol. 2, 1996, pp. 305-349.
  16. J. Janardhana Reddy, N. Ravi and M. Vijayakumar, "A Simple Model for Viscosity of Powder Injection Moulding with Binder above Powder Critical Binder Volume Concentration", Journal of European Ceramic Society, Vol. 20, 2002, pp. 2183-2190.