بررسی ساخت شیشه و شیشه سرامیکهای اکسی فلوریدی شفاف حاوی نانوبلورهای فلورید کلسیم درحضور مقادیر مختلف K₂O

لاله فرحي نيا*' و محمد رضواني'

^ادانشگاه تبریز، دانشکاده فنی مهندسی مکانیک، گروه مهندسی مواد، تبریز، ایران.

تاريخ ثبت اوليه: ١٣٩۴/٠۴/٠۶، تاريخ دريافت نسخهٔ اصلاحشده: ١٣٩٤/٠٥/١٧، تاريخ پذيرش قطعي: ١٣٩۴/٠٧/٠٥

چکیده طی دهمهای اخیر شیشه سرامیکهای اکسی فلوریدی حاوی نانوبلورهای فلوریدی به دلیل داشتن ویژگیهایی چون انرژی فونونی پایین (۵۰۰ ۱/cm ~) و مقاومت شیمیایی، حرارتی و مکانیکی مطلوب مورد توجه پژوهشگران زمینه فوتونیک قرار گرفتهاند. اهداف پژوهش حاضر مطالعه تأثیر افزودنی 20 K2 در ساخت شیشههای اکسی فلوریدی، تبلور، ساختار و شفافیت آنها است. برای این منظور شیشههای سیستم SiO₂ - CaO - CaF₂ در حضور مقادیر مختلف افزودنی (۸۵۰ ۳ و ۲۵/۵ نسبت وزنی) با عملیات ذوب و ریخته گری ساخته شدند. طبق نتایج TAG، دو ییک گرمازا مربوط به تبلور حضور مقادیر مختلف افزودنی (۸۵۰ ۳ و ۲۵/۵ نسبت وزنی) با عملیات ذوب و ریخته گری ساخته شدند. طبق نتایج TAG، دو ییک گرمازا مربوط به تبلور محضور مقادیر مختلف افزودنی که تاکنون تفسیر متقاعد کنندهای برای آن ارائه نشده (۲ موری نقطهای CaF2 علاوه بر تایید نتایج TAG، پیک گرمازای دوم را معرف تبلور فاز آنورتیت بیان کردند. همچنین در شیشه سرامیکهای ساخته شده براساس دمای پیک گرمازا اول، تنها فاز متبلور شده نانوبلورهای فلورید کلسیم بود. برای بررسی تاثیر مقدار CaC می می ساخته شده مینه مربی مود مای یک گرمازا اول، تنها فاز متبلور شده نانوبلورهای فلورید کلسیم بود. برای بررسی تاثیر مقدار و از شفیت و ساختار شیشه ها، طیفهای موابنفش – مرئی و طیفهای K2O این اول، تنها فاز متبلور هاز گرونتیت بیان کردند. همچنین در شیشه سرامیکهای ساخته شده مراینه مربی و طیفهای K2O به مقدار شده نانوبلورهای فلورید کلسیم بود. برای بررسی تاثیر مقدار CaC به بور در ناحیه فراینفش – مرئی (٪۸۷۰

كلمات كليدى: شيشه سراميك اكسى فلوريدى، بلور CaF₂، افزودني K₂O.

Investigation into the Processing of Transparent Oxyfluoride Glass and Glass Ceramics Containing CaF₂ Nanocrystals in Presence of K₂O Additive

Laleh Farahinia^{*1}, Mohammad Rezvani¹

¹ University of Tabriz, Mechanical Engineering Faculty, Materials Engineering Department, Tabriz, Iran.

Abstract During the last few decades, oxyfluoride glass ceramics containing fluoride nanocrystals have received more attention in photonic applications due to their low phonon energies (~500 1/cm) and favorable mechanical, thermal and chemical stability. Main purposes of the present research are investigation of the K₂O role on their processing, crystallization behavior structure and transparency. Glasses in the SiO₂- Al₂O₃- CaO- CaF₂ system with different amounts of K₂O additive (1.5, 3 and 4.5 weight ratio) were prepared by convenient melting process. DTA curves exhibited two exothermic peaks, one related to CaF₂ crystallization (~ 700 °C) and the other which had not been interpreted clearly before (~ 900°C). XRD patterns, SEM images and EDX analysis confirmed the DTA results and revealed that the second exothermic peak was related to crystallization of anorthite. Glass ceramic samples were prepared on the basis of crystallization temperatures derived from DTA. The only precipitated crystalline phase in the glass samples heat treated on the basis of the first peak of DTA, was CaF₂ With the aim of studying the transparency and structural changes of glass samples with different amounts of K₂O content, transmittance in UV- Vis region and FT-IR spectra of them were studied. According to the better crystallization behavior and higher transparency in UV- Vis region (~87%), the glass containing 4.5 (weight ratio) K₂O additive.

*عهده دار مکاتبات

نشانی: دانشگاه تبریز، دانشکده ی مکانیک، گروه مهندسی مواد، تلفن: ۹۱۴۱۰۲۶۵۷۲، دورنگار: ۴۱۳۳۳۶۲۲۸۲، پیام نگار: lalefarahinia@gmail.com

۱ – مقدمه

تک بلورها و شیشههای فلوریدی به دلیل ویژگیهایی چون عبوردهی مطلوب در محدوده طول موجهای فرابنفش تا فروسرخ، قابلیت انحلال مقدار قابل توجهی از عناصر خاکی نادر در شبکه خود و انرژی فونونی کم، به بهترین گزینه برای شبکه میزبان در کاربردهای لیزر تبدیل شدهاند [۲-۱]. علی رغم ویژگیهای مطلوب ذکر شده، شیشههای فلوریدی در مقایسه با شیشههای اکسیدی مقاومت حرارتی، شیمیایی و مکانیکی پايين تري دارند. تک بلورهاي فلوريدي نيز همانند ساخت سایر تک بلورها با مشکلات ساخت زیادی مواجه هستند [۴-۴]. از طرف دیگر، شیشههای اکسیدی با وجود داشتن ویژگیهای مطلوب حرارتی، شیمیایی و مکانیکی، عملا به دليل انرژي فونوني بالا كاربردهاي ايتيكي كمتري دارند [۴-۵]. در راستای رفع مشکلات مذکور، به تازگی شیشه سرامیکهای جدیدی تحت عنوان شیشه سرامیکهای اکسی فلوریدی توسط اهواکی و وانگ ([۵] ابداع شدهاند که به طور همزمان از خواص مطلوب شیشههای اکسیدی و مواد فلوریدی بهرهمند هستند. در واقع چنین شیشه سرامیکهایی مواد دوفازه هستند که در آنها یک فاز نانوبلوری فلوریدی در زمینه شیشهای آلومینوسیلیکاتی قرار گرفته است [۶]. نانوبلورهای فلوریدی متبلور شده در این شیشه سرامیکهای اکسی فلوریدی اغلب و PbF2 و CdF2 هستند، اما CdF_2 و PbF2 PbF_2 ،CdF2 اثرات سوء PbF2 و زیستمحیطی داشته و شیشه سرامیکهای حاوی نانوبلورهای LaF₃ به دلیل هزینه بالای LaF₃، تولید پرهزینهای دارند [۷]. اخیرا به دلیل هزینه پایین و سمی نبودن، تبلور نانوبلورهای MF₂(M= Ca, Sr, Ba) در این شیشه سرامیکها مورد توجه قرار گرفته است [۸]، به ویژه دستهای که حاوی نانوبلورهای CaF₂ هستند در مقایسه با سایر شیشه سرامیکهای اکسی فلوريدى به علت قيمت پايين، سمى نبودن، شفافيت در محدوده طول موج ۱۳ ۰/۱۳ تا ۹/۵ میکرومتر، همخوانی ضریب شکست بلور CaF₂ با زمینه شیشهای و حلالیت بالا برای یونهای خاکی نادر از جذبه زیادی برخوردارند [۱۰-۹]. تا کنون ویژگیهای لومینسنسی و تبدیل رو به بالای شیشه سرامیکهای حاوی بلورهای CaF₂ آلاییده شده به یونهای

خاکی نادر مختلف مورد بررسی پژوهشگران قرار گرفته، اما كمتر به جنبه موادى آنها پرداخته شده است. با اين حال مطالعات سینتیکی بر روی تبلور شیشههای اکسی فلوریدی [۱۱–۱۲] و همچنین رفتار تبلور نانوبلورهای CaF₂ از شیشههای Na₂O/K₂O/CaO/CaF₂/Al₂O₃/SiO₂ انجام گرفته است. ایمانیه و همکارانش [۸] نیز تأثیر نسبت SiO₂/Al₂O₃ و همچنین مقدار CaF₂ را بر روی تبلور شیشههای سیستم SiO₂- Al₂O₃- CaF₂ مطالعه کردهاند. در پژوهش حاضر افزودنی K₂O که توسط سایر محققین به صورت مجزا مورد بررسی قرار نگرفته، به عنوان یک افزودنی گدازآور جدید در شیشه سرامیکهای سیستم -SiO₂- Al₂O₃ CaF₂- CaO مورد استفاده قرار گرفت و تاثیر مقادیر مختلف آن بر روی تبلور، ساختار و شفافیت شیشهها مطالعه شد. اگرچه مقادیر بالاتر K₂O باعث افزایش اندازه بلورهای CaF₂ می شود اما درصد عبور در محدوده فرابنفش مرئی تا ۸۷٪ افزایش می یابد. از این رو شیشه حاوی بیشترین مقدار K₂O (۴/۵ نسبت وزنی) به عنوان ترکیب بهینه معرفی گردید.

۲– روش تحقیق

جدول (۱) ترکیب شیشههای پایه را برحسب نسبت وزنی نشان می دهد. این ترکیب پرکاربردترین ترکیبی می باشد که توسط سایر محققین مورد استفاده قرار گرفته است. علاوه بر سه جز اصلی CaF_2 - Al_2O_3 - CaF_2 مقداری (200 نیز به کار برده شده است. در واقع جایگزینی مقداری از CaF_2 با Ca برده شده است. در واقع جایگزینی مقداری از CaF_2 با Ca برده شده است. در واقع جایگزینی مقداری از CaF_2 با Ca برده شده است. در واقع جایگزینی مقداری از SiG_2 - CaF_2 با Ca به صورت یون - ۲) جلوگیری می نماید [۱۴]. (۱) SiO₂ + 2CaF₂ = SiF₄ + 2CaO

Sb₂O₃ و As₂O₃ نیز به عنوان عوامل حبابزدا مورد استفاده قرار گرفتند. همانگونه که ملاحظه می شود، علاوه بر ترکیب گزارش شده توسط سایر محققین، افزودنی K₂O در سه مقدار مختلف نیز به ترکیب اضافه گردید تا تاثیر این کمک ذوب مورد مطالعه قرار گیرد.

Ohwaki and Wang

^v Upconversion

ترکیب (نسبت وزنی) کد نمونه	SiO ₂	Ah2O3	CaO	CaF ₂	K20	As ₂ O ₃	Sb ₂ O ₃
GK 1.5	21/18	11/11	۷/۷۳	26/42	۱/۵	٠/٢	٠N
GK3	21/18	11/11	۷/۷۳	26/26	٢	۰/۲	٠N
GK 4.5	87/18	11/11	۷/۷۳	26/24	۴/۵	۰/۲	•17

جدول ۱. ترکیب شیشه پایه بر حسب نسبت وزنی.

مواد اولیه با خلوص بالا توسط ترازوی دیجیتالی با دقت ۰/۰۱ گرم، توزین و به صورت مکانیکی کاملا مخلوط شدند. مخلوطهای حاصل در بوته آلومینایی سرپوشیده در کوره الکتریکی در دمای ۲°۰۹ به مدت ۱ ساعت ذوب گردید. مذابهای شیشهای در قالب فولادی زنگ نزن پیش گرم شده در دمای ۲°۵۰۰ ریخته و به صورت قرصهایی با ضخامت تقریبا cm ۵/۰ شکل دهی شدند. به منظور رفع تنشهای داخلی، قطعات شیشهای در دمای ۲°۵۰۰ به مدت ۸۰ ساعت تحت عملیات حرارتی تنشزدایی قرار گرفتند.

برای تعیین دمای تبلور از دستگاه آنالیز حرارتی برای تعیین دمای تبلور از دستگاه آنالیز حرارتی افتراقی (DTA) استفاده گردید. مطالعه و شناسایی فازهای بلوری تبلور در نمونههای شیشه سرامیکی از طریق الگوهای XRD گرفته Diffractometer D در نمیشه سرامیکی از طریق الگوهای MDS گرفته منده از دستگاه پراش پرتو ایکس مدل - Diffractometer D محصول شرکت Siemens انجام گرفت. به منظور تعیین شیشه سرامیکها از دستگاه آنالیز RT-IR (مدل 27 Tensor 27 شیشه سرامیکها از دستگاه آنالیز RT-IR (مدل 27 Tensor 27 محصول شرکت Bruker کشور آلمان) استفاده شد. برای بررسی تاثیر K₂O بر میزان شفافیت شیشهها آنالیز جذبی فرابنفش – مرئی (UV-Vis) با استفاده از دستگاه SIM آنالیز نقطهای K2O نمونههای شیشه سرامیکی، دستگاه MIRA3 FEG-SEM انالیز نقطهای Tescan کشور استفاده قرار گرفت. ساخت کمپانی Tescan کشور استفاده قرار گرفت.

۳- نتایج و بحث ۳-۱- بررسی آنالیز حرارتی

شکل (۱) نتایج آنالیز DTA شیشههای اکسی فلوریدی حاوی مقادیر مختلف K₂O را نشان میدهد. همچنین دو پیک گرمازا در الگوهای DTA شیشهها نیز مشاهده می شود. پیک

ظریف و پهنی که در حدود دمایC°۷۰۰ ظاهر شده مربوط به تبلور فاز CaF₂ و پیک تیزتر وآشکارتر موجود در حدود °C مربوط به فاز دومی است که در برخی مراجع آن را به فاز Ca₂Al₃O₆F [۸] نسبت داده و برخی دیگر [۱۵] قادر به شناسایی این فاز نبودهاند.

همان طور که ملاحظه می شود با افزایش مقدار K₂O، وضوح دماهای پیک تبلور بیشتر شده است. همچنین وجود K₂O بیشتر در نمونههای شیشهای دمای پیک تبلور CaF₂ را به دماهای پایین تری انتقال می دهد زیرا فرایند تبلور CaF₂ در این شیشهها یک فرایند کنترل شونده با ساز و کار نفوذ است [۱۳]. با توجه به این که K₂O نقش دگرگون سازی را در شبکه شیشهای دارد و متعاقبا اکسیژنهای غیر پلزن را در شبکه افزایش می دهد، نفوذ در ساختار شیشه بیشتر شده [۶] و فرایند تبلور با سهولت بیشتری انجام می گیرد. نهایتا این امر باعث می شود تا دمای تبلور CaF₂ به دماهای پایینی انتقال یابد.

شکل ۱. نمودار DTA شیشههای حاوی مقادیر مختلف K₂O.

۲-۳- طيف سنجي FT-IR و مطالعه ساختاري

برای مطالعه تاثیر K₂O بر ساختار شیشههای اکسی فلوریدی، طیفهای FT-IR آنها مورد بررسی قرار گرفت. شکل (۲) طیفهای FT-IR مربوط به شیشههای حاوی مقادیر مختلف K₂O را نشان میدهد.

شکل ۲. طیف FT-IR شیشههای حاوی مقادیر مختلف K₂O.

مطابق شکل (۲)، باندهای قرار گرفته در ^۱-۴۷۰ ۳ ، ۶۷۳ cm⁻¹ و ۱۱۶۷cm به ترتیب مربوط به ارتعاش خمشی، ارتعاش کششی متقارن و ارتعاش کششی نامتقارن پیوندهای Si- O- Si هستند [۱۷]. پیک موجود در Si- O- Sv۳cm⁻¹ ~ پیک بسیار پهنی است و از آن جایی که پیک مربوط به ارتعاش کششی Ca-F در محدوده ^۲-۷۷۵ cm قرار می گیرد [۱۸]، احتمالا پیکهای مربوط به ارتعاش کششی Ca-F و ارتعاش کششی متقارن Si- O- Si با هم همپوشانی ایجاد نمودهاند. به علت این که Ca موجود در نمونههای شیشه مقدار بالایی است، بنابراین باندی که در ¹-۹۷۹ cm قابل مشاهده است را می توان به ارتعاش پیوند Si- O- Ca نسبت داد [۱۷]. در شیشههای اکسی فلوریدی، Al₂O₃ نقش شبکه سازی را دارد و این واقعیت با پیک موجود در ۱۰۸۰ cm⁻¹ توجیه می شود زیرا این پیک مربوط به ارتعاش کششی نامتقارن Si- O- Al است [۱۹]. همچنین طبق گزارش هیل و همکارانش [۱۴]، در شیشههای اکسی فلوریدی یونهای F تنها به کاتیونهای آلومینیوم اتصال می یابند در نتیجه پیوندهای Al- F نیز در شبکه وجود خواهند داشت. پیک مربوط به این پیوند در عدد موج¹⁻۱۳۴۰ cm قابل مشاهده است [۲۰]. در بخش عددهای موج بالاتر پیکهای ضعیفی وجود دارند. پیکهای موجود در ۱۵۵۰ cm⁻¹ و ۱۵۱۳ cm⁻¹ به ترتیب مربوط به گروههای CO و آب مولکولی است. گروههای CO به دلیل جذب شیمیایی CO₂ محیط میباشد که از تجزیه کربناتهای موجود در مواد اوليه نشات گرفته است. البته گاهی اين پيکها را مرتبط با كربناتها دانستهاند كه به طور كامل تجزيه نشدهاند. پیکهای ریز و کوچک قابل تشخیص در ^۱-۱۶۴۳ cm-نیز مربوط به ارتعاش خمشی O-H هستند که منشا آنها آبهای سطحی جذب شده میباشد [۲۱]. پیوندهای K-O نیز در Si- O- Si همیوشانی Si- O- Si همیوشانی کرده و با افرایش مقدار K₂O شدت این پیکها نیز افزایش یافته است. از آن جایی که K₂O نقش دگرگون سازی در شبکه شیشه دارد، در طیفهای FT-IR مربوط به شیشههای حاوی مقادیر مختلف K₂O، عددهای موج مربوط به باندهای مختلف تغییر چندانی نکرده، اما ایجاد اکسیژنهای غیر پل و شبکه

بازتر شیشه منجر به شدت جذب بالاتر پیوندها شدهاند.

۳–۳– بررسی شفافیت شیشههای حاوی مقادیر مختلف K₂O

برای مطالعه شفافیت نمونههای اکسی فلوریدی، طیفهای عبوری آنها مورد بررسی قرار گرفت. در شکل (۳) طیفهای عبوری نمونهها آورده شده است. از روی طیفها مشاهده میشود که با افزایش مقدار K₂O موجود در ترکیب شیشهها، درصد عبور افزایش یافته است. به عبارت دیگر به دلیل ایجاد اکسیژنهای غیر پلزن در حضور K₂O بیشتر، شبکه شیشهای بازتر شده و مقدار عبور نور در نمونه حاوی ۴/۵ نسبت وزنی K₂O به حدود ۸۷٪ افزایش مییابد.

شکل۳. طیفهای عبوری شیشههای حاوی مقادیر مختلف K₂O در محدوده طول موج فرابنفش- مرئی.

۳–۴– فرآیند تبلور و بررسی فازی

براساس نمودارهای DTA شکل (۱) دمای تبلور شیشهها انتخاب شدند. شرایط مربوط به عملیات حرارتی تبلور تکمرحلهای برای شیشههای اکسی فلوراید حاوی مقادیر مختلف K₂O در جدول (۲) آورده شده است. دماهای تبلور از دمای پیک تبلور اولیه نمونهها آغاز و با فواصل دمایی C° ۵ افزایش یافته است. این روند افزایش دمای عملیات حرارتی تا مرحله کدر شدن نمونهها ادامه یافت. همچنین نمونهها در دمای پیک تبلور فاز دوم مشاهده شده در الگوی DTA نیز تحت عملیات حرارتی قرار گرفتند.

شکل (a) نتایج XRD نمونههای شیشه سرامیکی حاوی مقادیر مختلف K₂O را نشان میدهد که در دمای اولین پیک تبلورشان تولید شدهاند. چنانچه از این الگوها برمیآید

شکل ۴. نمودار نشان دهنده ارتباط بین اندازه بلور، دمای تبلور و مقدار افزودنی K₂O.

شکل ۵. الگوهای XRD شیشه سرامیکهای تبلور یافته در دمای (a) پیک تبلور اول (b) پیک تبلور دوم.

(b) GK1.5 (a) شکل ۴. الگوهای XRD شیشه سرامیکهای حاصل از شیشه (a) (b) GK1.5 (c) همکل ۴. الگوهای GK3 که در دماهای مختلف متبلور شدهاند.

شیشه سرامیکهای اکسی فلوریدی حاوی نانو بلورهای CaF₂ حاصل از تبلور شیشه GK1.5 از همان دماهای اولیه درنظر گرفته شده برای تبلور، شفافیت مطلوبی از خود نشان تنها فاز متبلور شده در هر سه نمونه شیشه سرامیکی، فاز CaF₂ است. نمونههایی که در دمای پیک تبلور دوم عملیات حرارتی شدهاند، دو فاز CaF₂ و آنورتیت را هم زمان در کنار هم دارا هستند (شکل (۴(b)). بنابراین میتوان پیک گرمازای دوم را به تبلور فاز آنورتیت (CaAl₂Si₂O₈) نسبت داد.

نمونههای شیشه سرامیکی تهیه شده با شرایط عملیات حرارتی (جدول ۲) تحت آنالیز XRD نیز قرار گرفتند. شکل (۶) نتایج XRD آنها را نشان میدهد که تا دمای CaF2 تنها فاز تبلور یافته CaF2 بوده است.

از رابطه شرر (رابطه ۱) برای محاسبه اندازه بلورهای ایجاد شده در زمینه شیشهای استفاده شد.

 $D = \frac{0.9\lambda}{BCos\theta_{B}}$ (1) معادله (1)

که در رابطه فوق، D اندازه بلور، B عرض پیک در نصف شدت بیشینه بر حسب رادیان، لمطول موج پرتو X و زاویه براگ مربوط به پیک پراش است. اندازه متوسط بلورهایی که با این شیوه محاسبه شدهاند، برای تمام نمونههای شیشه سرامیکی در جدول (۲) گردآوری شده و در نمودار شکل (۴) رابطه میان اندازه بلور، دمای تبلور و مقدار K2O نشان داده شده است.

جدول ۲. شرایط عملیات حرارتی تبلور برای نمونههای با مقادیر مختلف K₂O.

متوسط اندازه بلورها (nm)	زمان نگهداری (hr)	سرعت گرما <u>ی</u> ش (°C/min)	دمای عملیات حرارتی (°C)	مقدار افزودنی K ₂ O (%mol)	کد نمونه
18/84			¥84		GCK1.5-764
۳۹/۰۰			٨٠٠	1	GCK1.5-800
ft/1 ·	۲	۸٠	470	1/2	GCK1.5-825
97/97			۸۵ -	1	GCK1.5-850
-			9.4		GCK1.5-904
10/79	٢		YIY		GCK3-717
77/11			475]	GCK3-725
2.112			۷۵ -	1	GCK3-750
191.77		N	VV A		GCK3-775
PT FX			٨٠٠)	GCK3-800
FX/FF			470	1	GCK3-825
0-N4			٨٥ -	1	GCK3-850
-			9-1	1	GCK3-901
19/	۲		93.4		GCK4.5-684
19,0 -			٧		GCK4.5-700
77,89			475]	GCK4.5-725
TEND			۷۵ -]	GCK4.5-750
11 19		۸-	YV A	47	GCK4.5-775
FO /A 1]		٨٠٠]	GCK4.5-800
FA/RD	1		772	1	GK4.5-825
51/64]		۸۵ -]	GCK4.5-850
-			9.7	1	GCK45-903

Scherer equation

ندادند. اما نمونههای تولید شده از شیشههای GK3 و GK4.5 و GK4.5 در ابتدا کاملاً شفاف بوده و با افزایش دمای تبلور به تدریج شفافیت خود را از دست داده و نهایتاً در دمای C°۸۵۰ به صورت کاملاً سفید رنگ و مات درآمدند.

همان گونه که مشاهده می شود، با افزایش مقدار K₂O اندازه بلورهای ایجاد شده افزایش یافته (نمودار شکل ۵)، زیرا چنانچه اشاره شد، فرایند تبلور CaF₂ در شیشه سرامیکهای اکسی فلوریدی، سازوکار کنترل شونده با نفوذ است. از طرف دیگر راسل و همکارانش [۱۳] اشاره به سطحی داشتند که در حین تبلور CaF₂ در اطراف بلورهای فلورید کلسیم تشکیل می شوند و از رشد بیشتر بلورها جلوگیری میکنند. در واقع با تبلور فلورید کلسیم شیشه اطراف بلورها غنی از سیلیس و آلومینا شده و از نفوذ بیشتر برای رشد بلورها ممانعت میکنند. اما در شیشههای حاوی مقادیر بیشتر که، به دلیل گرانروی

۳- ۵- مطالعه ریزساختاری شیشه سرامیکهای
اکسیفلوریدی حاوی ۴/۵ نسبت وزنی افزودنی
K₂O

تصویر میکروسکوپ الکترونی روبشی شیشه سرامیک GCK4.5-775 در شکل (۷) با بزرگنماییهای ۵۰۰۰۰ و ۱۰۰۰۰۰ آورده شده و ملاحظه میشود که بلورهای CaF₂ در دل زمینه شیشهای قرار گرفتهاند. به دلیل تک مرحلهای بودن فرایند تبلور، خوشهای شدن بلورها و عدم یکسان بودن اندازه آنها کاملاً مشهود است.

شکل (a) تصویر SEM حاصل از الکترونهای برگشتی شیشه سرامیک اکسی فلوریدی متبلور شده در دمای پیک دوم (2° ۹۰۳) را نمایش می دهد که براساس آن نمونه مذکور به طور کامل متبلور شده است. براساس نتایج XRD انتظار می رفت دو فاز بلوری مختلف در این شیشه سرامیکها وجود داشته باشد. منطقه A که در شکل (a) ۸ نشان داده شده، مربوط به فاز شیشهای می باشد که در اثر حکاکی تاحدودی خورده شده است. نواحی روشن تر مانند منطقه B که قسمت اعظم نمونه را دربر گرفته اند مربوط به فاز بلورین CaF_2 هستند.

برخی مناطق به چشم میخورند نیز مربوط به فاز آنورتیت هستند زیرا در آنالیز EDX ناحیه C پیکهای مربوط به عناصر این فاز وجود دارند (شکل (۸(b).

(b) شکل ۷. تصویر میکروسکوپ الکترونی روبشی شیشه -GCK4.5 775 با بزرگنمایی (a) ۵۰۰۰۰ و (b)

(b)

شکل ۸ (a) تصویر SEM حاصل از الکترونهای برگشتی شیشه سرامیک اکسی فلوریدی متبلور شده در دمای پیک دوم (b) آنالیز EDX فاز بلوری آنورتیت (ناحیه C).

Russel

- Sun, X., Gu, M., Huang, Sh., Jin, X., Liu, X., Liu, B., Ni, Ch., "Luminescence behavior of Tb³⁺ ions in transparent glass and glass- ceramics containing CaF₂ nanocrystals", *J. Lumin.*, 2009, 129, 773- 777.
- Imanieh, M. H., Eftekhari Yekta, B., Marghussian, V., Shakhesi, S., Martin, I. R., "Crystallization of nano calcium fluoride in CaF₂- Al₂O₃- SiO₂ system", *Solid State Sci.*, 2013, 17, 76-82.
- Chen, D., Wang, Y., Yu, Y., Ma, E., Liu, F., "Fluorescence and Judd- Ofelt analysis of Nd³⁺ ions in oxyfluoride glass ceramics containing CaF₂ nanocrystals", *J .Phys. Chem. Solids*, 2007, 68, 193-200.
- Hu, Zh., Wang, Y., Ma, E., Chen, D., Bao, F., "Crystallization and spectroscopic properties investigations of Er³⁺ doped transparent glass ceramics containing CaF₂", *Mater. Chem. Phys.*, 2007, 101, 234-237.
- Russel, C., "Nano crystallization of CaF₂ from Na₂O/ K₂O/ CaO/ CaF₂/ Al₂O₃/ SiO₂ glasses", *Chem. Mater.*, 2005, 17, 5843- 5847.
- 12. Sung, Y., "crystallization kinetics of fluoride nanocrystals in oxyfluoride glasses", *J. Non- cryst.* Solids, 2012, 358, 36- 39.
- Secu, M., Secu, C. E., Polosan, S., Aldica, G., Ghica, C., "crystallization and spectroscopic properties of Eudoped CaF₂ nanocrystals in transparent oxyfluoride glass- ceramics", *J. Non- cryst.* Solids, 2009, 355, 1869-1872.
- Hill, R., Wood, D., Thomas, M., "Trimethylsilylation analysis of the silicate structure of fluoro-aluminosilicate glasses and the structural role of fluorine", *J. Mater. Sci.*, 1999, 34, 1767-1774.
- Aldica, G., Secu, M., "Investigations of the Nonisothermal Crystallization of CaF₂ Nanoparticles in Smdoped Oxyfluoride Glasses", *J. Non- cryst. Solids*, 2010, 356, 1631-1636.
- Matijasevic, S. D., Tosic, M. B., Grujic, S. R., Stojanovic, J. N., Zivanovic, V. D., Nikolic, J. D., "The Effect of K₂O on the Crystallization of Niobium Germanate Glasses", *Science of Sintering*, 2011, 43, 47-53.
- Mukherjee, D. P., Kumar Das, S., Effects of nano silica on synthesis and properties of glass ceramics in SiO₂-Al₂O₃- CaO- CaF₂ glass system: A comparison, *J. Non-Cryst. Solids*, 2013, 368, 98-104.
- M. M. Khunur, Risdianto, A., Mutrofin, S., Prananto, Y. P., "Synthesis of Fluorite (CaF₂) Crystal from Gypsum Waste of Phosphoric Acid Factory in Silica Gel, Bulletin of Chemical Reaction Engineering & Catalysis", 2012, 7, 71-77.
- Kim, G. H., Sohn, II., "Effect of Al₂O₃ on the Viscosity and Structure of Calcium Silicate – Based Melts Containing Na₂O and CaF₂", *Journal of Non- Crystalline Solids*, 2012, 358, 1530- 1537.
- 20. Zhang, Y., Chen, D., Multilayer integrated film bulk acoustic resonators, Springer, New York, 2013.
- 21. Huang, C. K., Kerr, P. F., Infrared Study of the Carbonate Minerals, The American Mineralogist, 1960, 45, 58- 59.
- 22. Theodosoglou, E., Koroneos A., Soldatos T., Zorba T., Paraskevopoulos K.M., "Comparative Fourier transform infrared and X- ray powder diffraction analysis of naturally occurred K- feldspars, Proceedings of the 12th International Congress", Patras, May, 2010.

۴- نتیجه گیری

۱. با افزایش مقدار افزودنی K₂O و متعاقبا افزایش
۱کسیژنهای غیر پلزن و تسهیل نفوذ، دمای تبلور فاز CaF₂ از V۶۴
۷۶۴ کاهش یافت.

۲. مطالعات ساختاری براساس طیفهای FT-IR کاملا تایید کننده ساختار یک شیشه اکسی فلوریدی بودند. همچنین افزایش مقدار افزودنی K₂O منجر به افزایش شدت جذب پیوندهای موجود شده بود.

۳. به دلیل افزایش مقدار اکسیژنهای غیرپلزن، شفافیت شیشهها در حضور مقدار بیشتری از افزودنی K₂O افزایش و در نمونه حاوی ۴/۵ نسبت وزنی K₂O به ۸۷٪ رسید.

۴. با وجود این که K₂O باعث افزایش اندازه بلورهای ایجاد شده در نمونههای شیشه سرامیکی شد، ولی منجر به افزایش شفافیت و کاهش دمای تبلور فاز CaF2 گردید درنتیجه مقدار ۴/۵ نسبت وزنی K₂O به عنوان میزان بهینه افزودنی معرفی شد.

۵. طبق نتایج XRD و آنالیز EDX، پیک گرمازای دوم که در الگوهای DTA حضور داشتند به تبلور فاز آنورتیت نسبت داده شد.

مراجع

- 1. Gan, F., Optical properties of fluoride glasses: a review, *J. Non- Cryst. Solids*, 1995, 184, 9-20.
- Nazabal, V., Poulain, M., Olivier, M., Pirasteh, P., Camy, P., Dualan, J., Guy, S., Djouama, T., Boultarfaia, A., Adam, J. L., "Fluoride and oxyfluoride glasses for optical applications", *J. Fluorine Chem.*, 2012, 134, 18-23.
- Fu, J., Parker, J. M., Flower, P. S., Brown, R. M., "Eu³⁺ ions and CaF₂- containing transparent glass- ceramics" *Mater. Res. Bull.* 2002, 37, 1843-1849.
- 4. Kishi, Y., Tanabe, S., "Infrared- to- visible upconversion of rare- earth doped glass ceramics containing CaF₂ crystals", *J. Alloy. Compd.*, 2006, 408- 412, 842- 844.
- Wang, Y., Ohwaki, J., "New transparent vitroceramics codoped with Er³⁺ and Yb³⁺ for efficient frequency upconversion", *Appl. Phys. Lett.*, 1993, 63(24), 3268-3270.
- Babu, P., Jang, K. H., Kim, E. S., Shi, L., Seo, H. J., "Optical Properties and white- light emission in Dy³⁺ doped transparent oxyfluoride glass and glass ceramics containing CaF₂ nanocrystals", *J. Korean Phys. Soc.*, 2009, 4, 1488- 1491.