نوع مقاله : مقاله کامل پژوهشی

نویسندگان

دانشگاه علم و صنعت ایران، دانشکده مهندسی مواد و متالورژی، تهران، ایران

چکیده

در این پژوهش، پودرهای تک فاز فریت کبالت (CoFe2O4) توسط روش سنتز احتراق محلولی با استفاده از نیترات های فلزی به عنوان اکسنده و گلایسین به عنوان سوخت در مقادیر متفاوت نسبت مولی سوخت به اکسنده (f) برابر با 5/0، 75/0، 1 و 25/1 تهیه شدند. ساختار، مورفولوژی و مساحت سطح ویژه پودرهای فریت کبالت احتراق یافته توسط روش هایی چون پراش پرتو ایکس، میکروسکوپ الکترونی روبشی، جذب-واجذب نیتروژن ارزیابی شدند. با افزایش مقدار سوخت، مساحت سطح ویژه و حجم تخلخل به ترتیب از 285 به m2/g 35 و 38/1 به cm3/g 17/0 کاهش یافتند. پودرهای فریت کبالت احتراق یافته به عنوان جاذب برای حذف یون کادمیم از محلول آبی استفاده شدند. بررسی زمان تماس نشان داد که سینتیک فرآیند جذب از مدل شبه مرتبه دوم پیروی می کند. ایزوترم های جذب به خوبی بر مدل فردلیچ منطبق شدند و بیشترین میزان ظرفیت جذب ( mg/g 694) توسط پودرهای فریت کبالت احتراق یافته در نسبت مولی سوخت به اکسنده برابر با 75/0 بدست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Removal of Cadmium (II) Using CoFe2O4 Powders Synthesized by Solution Combustion Method

نویسندگان [English]

  • Banafsheh Pourgolmohammad
  • Seyed Morteza Masoudpanah
  • Mohammad Reza Aboutalebi

Iran University of Science and Technology (IUST), School of Metallurgy & Materials Engineering, Tehran, Iran.

چکیده [English]

Cobalt ferrite (CoFe2O4) powders were successfully prepared by solution combustion synthesis using metal nitrates as oxidant and glycine as fuel at various fuel to oxidant molar ratios (f=0.5, 0.75, 1 and 1.25). The structure, morphology and specific surface area of as-combusted CoFe2O4 powders were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption techniques. By increasing of fuel content, the specific surface area and pore volume decreased from 285 to 35 m2/g and 1.38 to 0.17 cm3/g, respectively. The as-combusted magnetic CoFe2O4 powders were used as adsorbent for removal of Cd(II). The effect of the contact time showed the kinetics of adsorption process followed the pseudo-second-order model and was controlled by film diffusion process. The adsorption isotherms were also well fitted on the Freundlich model. The as-combusted CoFe2O4 powders at f=0.75 exhibited excellent adsorption capacity (694 mg g−1) and high adsorption rate.

کلیدواژه‌ها [English]

  • CoFe2O4
  • Solution combustion synthesis
  • Specific surface area
  • Adsorption
[1] K.S. Rao, M. Mohapatra, S. Anand, P. Venkateswarlu, Review on cadmium removal from aqueous solutions, International Journal of Engineering, Science and Technology, 2 (2010) 81-103.
[2] A.S. Mohammed, A. Kapri, R. Goel, Heavy Metal Pollution: Source, Impact, and Remedies, in: M.S. Khan, A. Zaidi, R. Goel, J. Musarrat (Eds.) Biomanagement of Metal-Contaminated Soils, Springer Netherlands, Dordrecht, 2011, 1-28.
[3] B. Volesky, G. Naja, Toxicity and Sources of Pb, Cd, Hg, Cr, As, and Radionuclides in the Environment,  Heavy Metals in the Environment, CRC Press, 2009.
[4] X. Lin, R.C. Burns, G.A. Lawrance, Heavy Metals in Wastewater: The Effect of Electrolyte Composition on the Precipitation of Cadmium(II) Using Lime and Magnesia, Water, Air, and Soil Pollution, 165 (2005) 131-152.
[5] S.R. Younesi, H. Alimadadi, E.K. Alamdari, S.P.H. Marashi, Kinetic mechanisms of cementation of cadmium ions by zinc powder from sulphate solutions, Hydrometallurgy, 84 (2006) 155-164.
[6] S. Kocaoba, G. Akcin, Removal of chromium (III) and cadmium (II) from aqueous solutions, Desalination, 180 (2005) 151-156.
[7] V. Kumar, M. Kumar, M.K. Jha, J. Jeong, J.-c. Lee, Solvent extraction of cadmium from sulfate solution with di-(2-ethylhexyl) phosphoric acid diluted in kerosene, Hydrometallurgy, 96 (2009) 230-234.
[8] Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon, 41 (2003) 1057-1062.
[9] I. Kula, M. Uğurlu, H. Karaoğlu, A. Çelik, Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation, Bioresource Technology, 99 (2008) 492-501.
[10] Y.N. Mata, M.L. Blázquez, A. Ballester, F. González, J.A. Muñoz, Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus, Journal of Hazardous Materials, 163 (2009) 555-562.
[11] D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?, Coordination, 315 (2016) 90-111.
[12] A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution Combustion Synthesis of Nanoscale Materials, Chemical Reviews, 116 (2016) 14493-14586.
[13] W. Wen, J.-M. Wu, Nanomaterials via solution combustion synthesis: a step nearer to controllability, RSC Advances, 4 (2014) 58090-58100.
[14] A.S. Mukasyan, A.S. Rogachev, S.T. Aruna, Combustion synthesis in nanostructured reactive systems, Advanced Powder Technology, 26 (2015) 954-976.
[15] K.S.W. Sing, et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985) 603–619.
[16] B. Pourgolmohammad, S.M. Masoudpanah, M.R. Aboutalebi, Synthesis of CoFe2O4 powders with high surface area by solution combustion method: Effect of fuel content and cobalt precursor, Ceramics International, 43 (2017) 3797-3803.
[17] G. Chen, K.J. Shah, L. Shi, P.-C. Chiang, Removal of Cd(II) and Pb(II) ions from aqueous solutions by synthetic mineral adsorbent: Performance and mechanisms, Applied Surface Science, 409 (2017) 296-305.
[18] E. Asuquo, A. Martin, P. Nzerem, F. Siperstein, X. Fan, Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies, Journal of Environmental Chemical Engineering, 5 (2017) 679-698.
[19] S. Duan, R. Tang, Z. Xue, X. Zhang, Y. Zhao, W. Zhang, J. Zhang, B. Wang, S. Zeng, D. Sun, Effective removal of Pb(II) using magnetic Co0.6Fe2.4O4 micro-particles as the adsorbent: Synthesis and study on the kinetic and thermodynamic behaviors for its adsorption, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 469 (2015) 211-223.
[20] Y.S. Ho, G. McKay, Application of Kinetic Models to the Sorption of Copper(II) on to Peat, Adsorption Science & Technology, 20 (2002) 797-815.
[21] Y. Chen, J. Hu, J. Wang, Kinetics and thermodynamics of Cu(II) biosorption on to a novel magnetic chitosan composite bead, Environmental Technology, 33 (2012) 2345-2351.
[22] L. Han, H. Sun, K.S. Ro, K. Sun, J.A. Libra, B. Xing, Removal of antimony (III) and cadmium (II) from aqueous solution using animal manure-derived hydrochars and pyrochars, Bioresource Technology, 234 (2017) 77-85.
[23] E. Bulut, M. Özacar, İ.A. Şengil, Adsorption of malachite green onto bentonite: Equilibrium and kinetic studies and process design, Microporous and Mesoporous Materials, 115 (2008) 234-246.
[24] J. Febrianto, A.N. Kosasih, J. Sunarso, Y.-H. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies, Journal of Hazardous Materials, 162 (2009) 616-645.
[25] M. Auffan, J. Rose, J.-Y. Bottero, G.V. Lowry, J.-P. Jolivet, M.R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nat Nano, 4 (2009) 634-641.
[26] S.S. Tripathy, A.M. Raichur, Abatement of fluoride from water using manganese dioxide-coated activated alumina, Journal of Hazardous Materials, 153 (2008) 1043-1051.
[27] E. Pehlivan, T. Altun, Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80, Journal of Hazardous Materials, 140 (2007) 299-307.