نوع مقاله : مقاله کامل پژوهشی

نویسندگان

مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد

چکیده

بهبود مقاومت به خوردگی توسط فرایند الکتروپولیش یکی از راه‌های مهم در فرایند اصلاح سطح می‌باشد. در این تحقیق اثر دو متغیر غلظت اسید پرکلریک و دمای حمام بر فرایند الکتروپولیش و تاثیر آن بر مقاومت به خوردگی آلیاژ اینکونل 718 بررسی شد. جهت بررسی ریزساختار و کیفیت زبری سطح، قبل و بعد از الکتروپولیش به ترتیب از تصاویر میکروسکوپ الکترونی روبشی و آزمون زبری سنجی سطح استفاده شد. جهت تعیین محدوده ولتاژ و جریان الکتروپولیش از منحنی‌های  I-V استفاده شد. نتایج نشان داد دستیابی به سطحی یکنواخت و عاری از حفرات تنها در شرایطی حاصل می‌شود که ترکیب الکترولیت حاوی 20 درصد حجمی اسید پرکلریک  و دمای حمام برابر °C 15 باشد. تحت شرایط مذکور سرعت الکتروپولیش در مرزدانه‌ها و درون دانه‌ها به یکدیگر نزدیک شده و منجر به ایجاد سطحی صاف و یکنواخت می گردد. حداقل زبری سطح بعد از الکتروپولیش در شرایط بهینه µm 026/0 به دست آمد. نتایج حاصل از آزمون پلاریزاسیون تافل در محلول H2SO4+0.01M KSCN 0.5M نشان داد، الکتروپولیش موجب کاهش چگالی جریان خوردگی و نجیب‌تر شدن پتانسل خوردگی در آلیاژ شده است. نمونه الکتروپولیش شده در شرایط بهینه بیشترین مقاومت به خوردگی را از خود نشان داد. دلیل افزایش مقاومت به خوردگی در اثر الکتروپولیش به  تشکیل لایه اکسیدی یکنواخت و ریزساختار عاری از حفرات در سطح نسبت داده شد.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of temperature and electrolyte concentration in electropolishing process on corrosion resistance of Inconel 718 alloy

نویسندگان [English]

  • Hamed Rahimi
  • Ehsan Saebnoori

Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch

چکیده [English]

Improvement of the corrosion resistance capability by the electropolishing (EP) is one of the most importance process surface modification. In this paper, the effects of two variables perchloric acid concentration and bath temperature on the electropolishing process and the corrosion resistance performance of the Inconel 718 alloy were studied. Evaluation of microstructure and surface roughness quality before and after electropolishing process by the scanning electron microscopy (SEM) and surface roughness test were used, respectively. In order to determine voltage range and current electropolishing to I-V curves were used. The results showed that, obtain to uniform surface and without pores can be achieved only under the conditions has the electrolyte composition as 10 vol% H2O -70 vol% CH3COOH -20 vol% HClO4 and bath temperature is 15 °C. Electropolishing rate in the above conditions at the grain boundaries and inside the grains came close together and lead to a smooth and uniform surfaces. The minimum surface roughness after electropolishing on the above condition amount 0.026 μm obtained. The results of the TOEFL polarization test in a solution of 0.5M H2SO4 + 0.01M KSCN indicated, electropolishing Inconel 718 alloy reduces the corrosion current density and become more Noble in potential (Ecorr). Electropolished samples under optimized conditions has exhibited the highest resistance to corrosion.  The reason improving in the corrosion resistance Inconel 718 alloy by electropolishing that was attributed to the formation of very uniform oxide layer on surface and microstructure free of cavities.

کلیدواژه‌ها [English]

  • Electropolishing
  • Inconel 718 alloy
  • Perchloric Acid
  • Corrosion resistance
 
[1] Jacquet, P.A., "Electrolytic Polishing of Metallic Surfaces", Metal Finishing, 1949, Vol.  47, Pp. 48-54.
[2] Lee, S.J., and Lai, J.J., "The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel", Journal of Materials Processing Technology, 2003, Vol. 140, Pp. 206–210.
[3] Taylor, E.J., Crabb, H.M., Garich, H., Hall, T., and Inman, M., "A pulse/pulse reverse electrolytic approach to electropolishing and through-mask electroetching", Faraday Technology, 2012, Pp.768-780.
[4] Berns, H., Gavriljuk, V., and Riedner, S., "Structure", Engineering Materials, 2013, Pp. 21-83.
[5] Saito, K., "Development of electropolishing technology for superconducting cavities", Proceedings of the IEEE Particle Accelerator Conference, Portland, United States, 2003, Pp. 462-466.
[6] Sutow, E.J., "The influence of electropolishing on the corrosion resistance of 316L stainless steel", Journal of Biomedical Materials Research, 1980, Vol. 14, Pp. 587-595.
[7] Momeni, M., Esfandiari, M., and Moayed, M.H., “Improving pitting corrosion of 304 stainless steel by electropolishing technique", Iranian Journal of Materials Science & Engineering, 2012, Vol. 9, Pp. 34-42.
[8] Jin, S., Lu, X., Lin, L., and Zhao, K., "Study of buffered electropolishing on niobium sheet", Proceedings of SRF, 2009, Pp. 859-863.
[7] Eozenou, F., Berry, S., Gasser, Y., and Charrier, J.P., "More information concerning electro-polishing mechanisms in hydrofluoric–sulphuric acid mixtures", 14th International Conference on RF Superconductivity, Berlin, Dresden, 2009.
[8] Tash, M., Khalifa, W., and Hashash, A., "Effect of metallurgical differences between 356 and 384 alloys on their mechanical properties", Proceedings of The 9th Cairo University International Conference on Mechanical Design and Production (MDP-9), Cairo, Egypt, 2008, Pp. 992-1004.
[9] Simka. W., and Kaczmarek, M., "Electropolishing and passivation of NiTi shape memory alloy", Electrochimica Acta, 2010, Vol. 55, Pp. 2437–2441.
[10] Han, G., and  Lu, Z., "Improving the oxidation resistance of 316L stainless steel in simulated pressurized water reactor primary water by electropolishing treatment", Journal of Nuclear Materials, 2015, Vol. 467, Pp. 194–204.
[11] Han, Y., Mei, J., and Peng, Q., "Effect of electropolishing on corrosion of Alloy 600 in high temperature water", Corrosion Science, 2015, Vol. 98, Pp. 72–80.
[12] Rotty, C., Doche, M.L., Mandroyan, A., Hihn, J.Y., Montavon, G., Moutarlier, V., “Comparison of electropolishing behaviours of TSC, ALM and cast 316L stainless steel in H3PO4/H2SO4”,  Surfaces and Interfaces, 2017, Vol. 6, Pp. 170–176.

[13] Han, Y., Han, E,H., Peng, Q., Ke, W., “Effects of electropolishing on corrosion and stress corrosion cracking of Alloy 182 in high temperature water”, Corrosion Science, 2017, Vol. 121, Pp. 1-10.

[14] Babilas, D., Urbanczyk, E., Sowa, M., Maciej, A., Korotin, D.M., Zhidkov, I.S., Basiagad, M., Borkowicz, M.K., Warszynska, L.S., Pamuł, E., “On the electropolishing and anodic oxidation of Ti-15Mo alloy”, Electrochimica Acta, 2016, Vol. 205, Pp. 256-265.

[15] Liu, M., Meng, Y., Zhao, Y., Li, F., Gong, Y., Feng, L., “Electropolishing parameters optimization for enhanced performance of nickel coating electroplated on mild steel”, Surface and Coatings Technology, 2016, Vol. 286, Pp. 285–292.
[16] Paulonis, D.F., and Schirra, J., "Alloy 718 at pratt and whitneyhistorical perspective and future challenges", The Minerals. Metals and Materials Society, 2001, Pp. 13-23.
[17] Lee, S.J., Lee, Y., and Du, M., "The polishing mechanism of electrochemical mechanical polishing technology", Journal of Materials Processing Technology, 2003, Vol. 140, Pp. 280–286.
[18] Pelleg, J., "Electropolishing Pure Vanadium", Nuclear Research, 1970, Pp. 457-460.
[19] Mural, S., Ramachandra, M., Murthy, K.S.S., and Ramant, K.S., "Eiectropoiishing of AI-7Si-0.3Mg Cast Alloy by Using perchloric and Nitric Acid Electrolytes", Materials characterization, 1997, Vol. 38, PP. 273-286.
[20] Rahman, Z.U., Deen, K.M., Cano, L., Haider, W., “The effects of parametric changes in electropolishing process on surface properties of 316L stainless steel”, Applied Surface Science, 2017, Vol. 410, Pp. 432-444.
[21] Nazneena, F., Galvina, P., Arriganb, W.M., Thompsonc, M., Benvenutoc, P., and Herzoga, G., "Electropolishing of medical-grade stainless steel in preparation for surface nano-texturing", Journal of Solid State Electrochemistry, 2012, Vol. 16 , Pp. 1389-1397.
[22] Aihara, H., "Surface and biocompatibility study of electropolished Co-Cr Alloy L605", Master's Theses and Graduate Research, San Jose State University, 2009, Pp. 36-99.