نویسندگان

1 پژوهشگاه مواد و انرژی، پژوهشکده نانوتکنولوژی و مواد پیشرفته، کرج، ایران

2 آزمایشگاه تحقیقات شیمی دفاعی، کرج، ایران

چکیده

در این مطالعه، مدل OPLS تمام اتمی برای عامل شیمیایی خردل گوگردی به منظور بررسی جذب این ترکیب بر روی نانوساختار گرافن ارایه شده است. پارامترهای پیوندی درون ملکولی و هم‌چنین پارامترهای غیرپیوندی لنارد - جونز تک‌تک اتم‌های خردل، از منابع OPLS موجود استخراج شد. بارهای جزیی با استفاده از محاسبات کوانتومی آغازین به روش HF/6-31g(d) به‌دست آمد. نتایج حاصل نشان داد میدان نیروی OPLS خواص فیزیکی خردل مانند چگالی و گرمای تبخیر را به ترتیب با خطای میانگین کمتر از 1% و 5% در مقایسه با مقادیر گزارش شده تجربی در دو دمای K298 و K293 پیش‌گویی می کند. مقایسه‌ پارامترهای پیوندی حاصل از شبیه‌سازی دینامیک مولکولی و بهینه‌سازی ساختاری به‌دست آمده از مکانیک کوانتومی نیز نشان داد که هم‌خوانی مناسبی بین نتایج حاصل از دو روش وجود دارد. هم‌چنین مطالعه انرژی برهم‌کنش بین خردل و گرافن توسط محاسبات مکانیک مولکولی و مکانیک کوانتومی بر روی کرونن به عنوان مدلی از گرافن نشان داد که میدان نیروی OPLS می‌تواند به عنوان یک مدل صحیح و قابل اطمینان در مطالعات شبیه‌سازی دینامیک مولکولی جذب این ترکیب بر روی جاذب‌های پایه گرافنی مورد استفاده قرار بگیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Development of Optimized Potentials for Liquid Simulation (OPLS) Force Field to Sulfur Mustard in Order to Study its Adsorption on Graphene

نویسندگان [English]

  • Lelia Ebrahimi 1
  • Ali Khanlarkhani 1
  • Mohammad Reza Vaezi 1
  • Mehran Babri 2

1 Material and Energy research Center, Department of Nanotechnology and Advanced Material, Karaj, Iran.

2 Defense Chemical Research Lab (DCRL), P.O. Box: 31585-1461, Karaj, Iran.

چکیده [English]

In this study, the OPLS all-atom model was developed for sulfur mustard in order to study the adsorption of this compound on graphene. Intramolecular bonding parameters and Lennard–Jones nonbonding parameters are taken from the OPLS all-atom force field database. Partial charges are determined by ab initio calculations at HF/6-31g(d) level. The results showed that the OPLS all-atom force field predicts the physical properties of sulfur mustard like density and heat of evaporation with the mean error of less than 1% and 5% respectively at temperatures of 298 K and 293 K compared to experimental data. The comparison of intramolecular bonding parameters obtained from molecular dynamics simulation and quantum mechanical calculations showed that these results are well consistent with each other. Also, the study of the interaction energy between sulfur mustard and graphene by molecular mechanics and quantum mechanics on coronene as a model of graphene indicated that OPLS force field can be used as an accurate and reliable model in the molecular dynamics simulation studies of this compound on the adsorbents based on graphene.

کلیدواژه‌ها [English]

  • Force field
  • Sulfur mustard
  • Density
  • Heat of evaporation
  • Molecular Dynamics Simulation
1. Sokkalingam, N., Kamath, G., Coscione, M., Potoff, J J.,  Extension  of the  Transferable  Potentials  for Phase Equilibria Force Field to Dimethylmethyl Phosphonate, Sarin, and Soman, Journal of Physical Chemistry B, 113 (2009) 10292-10297.
2.   Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J., Development and Testing of the Opls All-Atom Force Field on Conformational Energetics and Properties of Organic  Liquids,  Journal   of  the  American  Chemical Society, 118(1996) 11225-11236.
3.     Feister,  A.J.,  Medical  Defense  against  Mustard  Gas: Toxic Mechanisms and Pharmacological Implications; Taylor & Francis, (1991).
4.     Malhotra, R., Ganesan, K., Sugendran, K., Swamy, R., Chemistry   and   Toxicology   of   Sulphur   Mustard-a Review, Defence Science Journal, 49 (1999) 97.
5.     Noort, D., Benschop, H., Black, R., Biomonitoring of Exposure to Chemical Warfare Agents: A Review, Toxicology and Applied Pharmacology, 184 (2002) 116- 126.
6.     Allen,  M.J.,  Tung,  V.C.,  Kaner,  R.B.,  Honeycomb Carbon: A Review of Graphene, Chemical Reviews, 110 (2009) 132-145.
7.     Rao,    C.N.R.,    Sood,    A.K.,    Subrahmanyam,    K.S., Govindaraj, A., Graphene: The New Two-Dimensional Nanomaterial,  Angewandte  Chemie  International Edition, 48 (2009) 7752-7777.
8.     Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S., Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Advanced Materials, 22 (2010) 3906-3924.
9.     Jorgensen, W.L., Tirado-Rives, J., The Opls [Optimized Potentials  for  Liquid  Simulations]  Potential  Functions for  Proteins,  Energy  Minimizations  for  Crystals  of Semiempirical,   and   ab   Initio   Methods,   Journal   of Physical Chemistry, 98 (1994) 3669 -3674.
11.   Müller, T.J., Müller-Plathe, F., A Comparison of Sulfur Mustard and Heptane Penetrating a Dipalmitoylphosphatidylcholine Bilayer Membrane, Journal of Hazardous Materials, 168 (2009) 13–24.
12.   Li, J., Yip, S., Basic Molecular Dynamics, Handbook of Materials Modeling, Springer, Netherlands, (2005).
13.   Darden, T., York, D., Pedersen, L., Particle Mesh Ewald: An  N⋅  Log  (N)  Method  for  Ewald  Sums  in  Large
Systems, The Journal  of Chemical Physics, 98 (1993) 10089-10092.
 14. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G., A Smooth Particle Mesh Ewald Method, The Journal of Chemical Physics, 103 (1995) 8577-8593.
15. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K., Scalable Molecular Dynamics with Namd, Journal of Computational Chemistry, 26 (2005) 1781-1802.
16. Zoete, V., Cuendet, M.A., Grosdidier, A., Michielin, O., SwissParam, a Fast Force Field Generation Tool for Small Organic Molecules, Journal of Computational Chemistry, 32 (2011) 2359-2368.
17. Jorgensen, W.L., Schyman, P., Treatment of Halogen Bonding in the Opls-Aa Force Field: Application to Potent Anti-Hiv Agents, Journal of Chemical Theory and Computation, 8 (2012) 3895-3901.
18. Caricato, M., Frisch, M.J., Hiscocks, J., Frisch, M.J., Gaussian 09: Iops Reference; Gaussian, (2009).
19. Lazar, P., Karlický, F.E., Jurečka, P., Kocman, M.S., Otyepková, E., Šafářová, K.R., Otyepka, M., Adsorption of Small Organic Molecules on Graphene, Journal of the American Chemical Society, 135 (2013) 6372-6377.
20. Rohini, K., Sylvinson, D.M., Swathi, R.S., Intercalation of HF, H2O, and NH3 Clusters within the Bilayers of Graphene and Graphene Oxide: Predictions from Coronene-Based Model Systems, Journal of Physical Chemistry A, 119 (2015) 10935-10945.
21. Simon, S., Duran, M., How does basis set superposition error change the potential surfaces for hydrogen-bonded
dimers?,
Journal of Chemical Physics, 105 (1996) 11024-11031.
22. Boys, S.F., Bernardi, F.D., The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors, Molecular Physics, 19 (1970) 553-566. 

23. Allen, F.H., Kennard, O., Watson, D.G., Tables of Bond Lengths determined by X-Ray and Neutron Diffraction.
Part I .Bond Lengths in Organic Compounds,
Journal of the Chemical Society, Perkin Transactions 2, 2 (1987) S1-S9.
24. Army, U., Potential Military Chemical/Biological Agents and Compounds, Released as Fm 3-11.9, Mcrp 3- 37.1 B, Ntrp 3-11.32, and Afttp (I) 3-2.55. January: (2005).
25. O’Neil, M., Smith, A., Heckelman, P., The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, Merck & Co. INC, New Jersey, (2006).
26. Wang, J., Tingjun, H., Application of molecular dynamics simulations in molecular property prediction I: Theory and Computation, 7 (2011) 2151-2165.