نویسندگان

1 دانشگاه صنعتی مالک اشتر، پژوهشکده مهندسی مواد، تهران، ایران

2 دانشگاه صنعتی مالک اشتر، پژوهشکده مهندسی مواد، تهران، ایران,

چکیده

در این تحقیق برای دستیابی به لایه اتصال فلزی نانوساختار در پوشش ‏های TBC، ابتدا پودر NiCrAlY میکرونی با فرآیند آسیاکاری به ذرات بسیار ریز در مقیاس نانو تبدیل شد و پس از آگلومره نمودن نانوذرات NiCrAlY، با فرآیند پاشش پلاسمایی اتمسفری (APS) بر روی زیرلایه فولاد زنگ نزن 420 لایه ‏نشانی گردید. فاصله تزریق پودر، نرخ تزریق هیدروژن و استفاده از دوش آرگون پارامترهایی بودند که برای لایه ‏نشانی مناسب نانوذرات NiCrAlY آگلومره مورد بررسی قرار گرفت. نتایج نشان داد که استفاده از دوش آرگون، میزان اکسیداسیون در پوشش‏ های نانو NiCrAlY را به طور چشمگیری کاهش می ‏دهد. به‌علاوه افزایش نرخ تزریق هیدروژن و افزایش فاصله تزریق پودر، میزان اکسیداسیون در پوشش حاصل را افزایش می‏ دهد. هم چنین نانوذرات NiCrAlY در مقایسه با ذرات میکرونی نسبت به اکسیداسیون بسیار حساس ‏تر هستند.

کلیدواژه‌ها

عنوان مقاله [English]

Modification of Plasma Spray Parameters of NiCrAlY Nano Particles for Achievement of Nano Structure TBC

نویسندگان [English]

  • Alireza Farzaneh 1
  • Zia Valefi 2
  • Karim Zangene Madar 1
  • Amir Hosein Sheikhali 1

1 Metal Materials Department, Malek Ashtar University

2 University of MalekAshtar, Department of Material Engineering, Tehran, Iran.

چکیده [English]

In this research to rich nano structure bond coat uses in TBC, firstly with ball milling process the micron size NiCrAlY convert to nano particle size NiCrAlY, and after agglomeration nano particle NiCrAlY, powder were deposited upon stainless steel 420 substrate with atmospheric plasma spray (APS) process. Injection distance of powder, hydrogen rate, and utilizationof argon shroud parameters were investigated for suitable deposition agglomeration nano NiCrAlY particles. The result shown, utilization of argon shroud in nano NiCrAlY bond coat was decreased oxidation salient. Also increase of injection distance of powder and hydrogen rate cause to oxidation enhancement. Moreover the nano particle NiCrAlY in comparison micron NiCrAlY toward oxidation was very tender.

کلیدواژه‌ها [English]

  • NiCrAlY
  • Nano Particles
  • Atmosphere Plasma Spray (APS)
  • Bond Coat
  • Thermal Barrier Coating (TBC)
  1. Heimann, R.B., Plasma Spray Coating: Principles and Application, Wiley, 2008.
  2. Kozerski, S., Latka, L., Pawlowski, L., Cernuschi, F., Petit, F., Pierlot, C., Podlesak, H., Laval, J.P., Preliminary Study on Suspension Plasma Sprayed ZrO2 +8wt.% Y2O3 Coatings, Journal of the European Ceramic Society, 2011, 31, 2089–2098.
  3. Hardwicke, C.U., Lau, Y.C., Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, Journal of Thermal Spray Technology, 2013, 22(5), 564-576.
  4. Bose, S., High Temperature Coatings, Butterworth–Heinemann, 2007.
  5. Wang, L., Wang, Y., Sun, X.G., He, J.Q., Pan, Z.Y., Wang, C.H., A Novel Structure Design Towards Extremely Low Thermal Conductivity for Thermal Barrier Coatings Experimental and Mathematical Study, Materials and Design, 2011, 35, 505–517.
  6. Chen, W.R., Wu, X., Dudzinski, D., Patnaik, P.C., Modification of oxide layer in Plasma-Sprayed Thermal Barrier Coatings, Surface & Coatings Technology, 2006, 200, 5863–5868.
  7. Wang, L., Wang, Y., Sun, X.G., He, J.Q., Pan, Z.Y., Wang, C.H, Microstructure and Indentation Mechanical Properties of Plasma Sprayed Nano Bimodal and Conventional ZrO2 8wt%Y2O3 Thermal Barrier Coatings, Vacuum, 2011, 1-12.
  8. Zhou, C., Wang, N., Xu, H., Comparison of Thermal Cycling Behavior of Plasma Sprayed Nanostructured and Traditional Thermal Barrier Coatings, Materials Science and Engineering A, 2007, 452, 569–574.
  9. Wang, L., Wang, Y., Sun, X.G., Pan, Z.Y., He, J.Q., Zhou, Y., Wu, P.L., Microstructure and Surface Residual Stress of Plasma Sprayed Nanostructured and Conventional ZrO2-8wt%Y2O3 Thermal Barrier Coatings, SurfaceInterface Anal., 2011, 43, 869–880.
  10. Xiao-bin, Y., Yue-guang, Y., Hai-fei, L., Jun-feng, B., Guo-juan, J., Variety Behavior in Spraying Process of Nano Particles Agglomerated YSZ Powder by APS, Proceedings of Sino-Swedish Structural Materials Symposium, 2007, 152-158.
  11. Gong, W.B., Sha, C.K., Sun, D.Q., Wang, W.Q., Microstructures and Thermal Insulation Capability of Plasma-Sprayed Nanostructured Ceria Stabilized Zirconia Coatings, Surface & Coatings Technology, 2006, 201, 3109–3115.
  12. Lima, R.S., Marple, B.R., Thermal Spray Coatings Engineered From Nanostructured Ceramic Agglomerated Powders for Structural Thermal Barrier and Biomedical Applications: A Review, Journal of Thermal Spray Technology, 2007, 16, 40-63.
  13. Ma, K., Schoenung, J.M., Isothermal Oxidation Behavior of Cryomilled NiCrAlY Bond Coat: Homogeneity and Growth Rate of TGO, Surface & Coatings Technology, 2011, 205, 5178–5185.
  14. Tang, F., Ajdelsztajn, L., Kim, G.E., Provenzano, V., Schoenung, J.M., Effects of Variations in Coating Materials and Process Conditions on the Thermal Cycle Properties of NiCrAlY/YSZ Thermal Barrier Coatings, Materials Science and Engineering A, 2006, 425, 94-106.
  15. Holger, K., Roberto, S., Dag, H., Robert, V., Detlev, S., Application of Suspension Plasma Spraying (SPS) for Manufacture of Ceramic Coatings, Journal of Thermal Spray Technology, 2008, 17(1), 115-123.
  16. Wei, Q. Yin, Z., Li, H., Oxidation Control in Plasma Spraying NiCrCoAlY Coating, Applied Surface Science, 2012, 258, 5094-5099.
  17. Yu, Q., Rauf, A., Wang, N., Zhou, C., Thermal Properties of Plasma-Sprayed Thermal Barrier Coating with Bimodal Structure, Ceramics International, 2011, 37, 1093–1099.
  18. Richer, P., Yandouzi, M., Beauvais, L., Jodoin, B., Oxidation Behaviour of CoNiCrAlY Bond Coats Produced by Plasma, HVOF and Cold Gas Dynamic Spraying, Surface & Coatings Technology, 2010, 204, 3962–3974.
  19. Saeidi, S., Voisey, K.T., McCartney, D.G., The Effect of Heat Treatment on the Oxidation Behavior of HVOF and VPS CoNiCrAlY Coatings, Journal of Thermal Spray Technology, 2009, 18, 209-216.